Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Binary relations
breq1d
Next ⟩
breqd
Metamath Proof Explorer
Ascii
Unicode
Theorem
breq1d
Description:
Equality deduction for a binary relation.
(Contributed by
NM
, 8-Feb-1996)
Ref
Expression
Hypothesis
breq1d.1
⊢
φ
→
A
=
B
Assertion
breq1d
⊢
φ
→
A
R
C
↔
B
R
C
Proof
Step
Hyp
Ref
Expression
1
breq1d.1
⊢
φ
→
A
=
B
2
breq1
⊢
A
=
B
→
A
R
C
↔
B
R
C
3
1
2
syl
⊢
φ
→
A
R
C
↔
B
R
C