Metamath Proof Explorer


Theorem breqtrdi

Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999)

Ref Expression
Hypotheses breqtrdi.1 φ A R B
breqtrdi.2 B = C
Assertion breqtrdi φ A R C

Proof

Step Hyp Ref Expression
1 breqtrdi.1 φ A R B
2 breqtrdi.2 B = C
3 eqid A = A
4 1 3 2 3brtr3g φ A R C