Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Binary relations
breqtri
Next ⟩
breqtrd
Metamath Proof Explorer
Ascii
Unicode
Theorem
breqtri
Description:
Substitution of equal classes into a binary relation.
(Contributed by
NM
, 1-Aug-1999)
Ref
Expression
Hypotheses
breqtr.1
⊢
A
R
B
breqtr.2
⊢
B
=
C
Assertion
breqtri
⊢
A
R
C
Proof
Step
Hyp
Ref
Expression
1
breqtr.1
⊢
A
R
B
2
breqtr.2
⊢
B
=
C
3
2
breq2i
⊢
A
R
B
↔
A
R
C
4
1
3
mpbi
⊢
A
R
C