Metamath Proof Explorer


Theorem brfi1ind

Description: Properties of a binary relation with a finite first component, proven by finite induction on the size of the first component. (Contributed by Alexander van der Vekens, 7-Jan-2018) (Revised by AV, 28-Mar-2021)

Ref Expression
Hypotheses brfi1ind.r Rel G
brfi1ind.f F V
brfi1ind.1 v = V e = E ψ φ
brfi1ind.2 v = w e = f ψ θ
brfi1ind.3 v G e n v v n G F
brfi1ind.4 w = v n f = F θ χ
brfi1ind.base v G e v = 0 ψ
brfi1ind.step y + 1 0 v G e v = y + 1 n v χ ψ
Assertion brfi1ind V G E V Fin φ

Proof

Step Hyp Ref Expression
1 brfi1ind.r Rel G
2 brfi1ind.f F V
3 brfi1ind.1 v = V e = E ψ φ
4 brfi1ind.2 v = w e = f ψ θ
5 brfi1ind.3 v G e n v v n G F
6 brfi1ind.4 w = v n f = F θ χ
7 brfi1ind.base v G e v = 0 ψ
8 brfi1ind.step y + 1 0 v G e v = y + 1 n v χ ψ
9 hashge0 V Fin 0 V
10 9 adantl V G E V Fin 0 V
11 0nn0 0 0
12 1 2 11 3 4 5 6 7 8 brfi1uzind V G E V Fin 0 V φ
13 10 12 mpd3an3 V G E V Fin φ