Metamath Proof Explorer


Theorem brfvopab

Description: The classes involved in a binary relation of a function value which is an ordered-pair class abstraction are sets. (Contributed by AV, 7-Jan-2021)

Ref Expression
Hypothesis brfvopab.1 X V F X = y z | φ
Assertion brfvopab A F X B X V A V B V

Proof

Step Hyp Ref Expression
1 brfvopab.1 X V F X = y z | φ
2 1 breqd X V A F X B A y z | φ B
3 brabv A y z | φ B A V B V
4 2 3 syl6bi X V A F X B A V B V
5 4 imdistani X V A F X B X V A V B V
6 3anass X V A V B V X V A V B V
7 5 6 sylibr X V A F X B X V A V B V
8 7 ex X V A F X B X V A V B V
9 fvprc ¬ X V F X =
10 breq F X = A F X B A B
11 br0 ¬ A B
12 11 pm2.21i A B X V A V B V
13 10 12 syl6bi F X = A F X B X V A V B V
14 9 13 syl ¬ X V A F X B X V A V B V
15 8 14 pm2.61i A F X B X V A V B V