Metamath Proof Explorer


Theorem brfvopabrbr

Description: The binary relation of a function value which is an ordered-pair class abstraction of a restricted binary relation is the restricted binary relation. The first hypothesis can often be obtained by using fvmptopab . (Contributed by AV, 29-Oct-2021)

Ref Expression
Hypotheses brfvopabrbr.1 A Z = x y | x B Z y φ
brfvopabrbr.2 x = X y = Y φ ψ
brfvopabrbr.3 Rel B Z
Assertion brfvopabrbr X A Z Y X B Z Y ψ

Proof

Step Hyp Ref Expression
1 brfvopabrbr.1 A Z = x y | x B Z y φ
2 brfvopabrbr.2 x = X y = Y φ ψ
3 brfvopabrbr.3 Rel B Z
4 brne0 X A Z Y A Z
5 fvprc ¬ Z V A Z =
6 5 necon1ai A Z Z V
7 4 6 syl X A Z Y Z V
8 1 relopabiv Rel A Z
9 8 brrelex1i X A Z Y X V
10 8 brrelex2i X A Z Y Y V
11 7 9 10 3jca X A Z Y Z V X V Y V
12 brne0 X B Z Y B Z
13 fvprc ¬ Z V B Z =
14 13 necon1ai B Z Z V
15 12 14 syl X B Z Y Z V
16 3 brrelex1i X B Z Y X V
17 3 brrelex2i X B Z Y Y V
18 15 16 17 3jca X B Z Y Z V X V Y V
19 18 adantr X B Z Y ψ Z V X V Y V
20 1 a1i Z V A Z = x y | x B Z y φ
21 20 2 rbropap Z V X V Y V X A Z Y X B Z Y ψ
22 11 19 21 pm5.21nii X A Z Y X B Z Y ψ