Metamath Proof Explorer


Theorem brgici

Description: Prove isomorphic by an explicit isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion brgici F R GrpIso S R 𝑔 S

Proof

Step Hyp Ref Expression
1 ne0i F R GrpIso S R GrpIso S
2 brgic R 𝑔 S R GrpIso S
3 1 2 sylibr F R GrpIso S R 𝑔 S