Metamath Proof Explorer


Theorem brif1

Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024)

Ref Expression
Assertion brif1 if φ A B R C if- φ A R C B R C

Proof

Step Hyp Ref Expression
1 iftrue φ if φ A B = A
2 1 breq1d φ if φ A B R C A R C
3 iffalse ¬ φ if φ A B = B
4 3 breq1d ¬ φ if φ A B R C B R C
5 2 4 casesifp if φ A B R C if- φ A R C B R C