Metamath Proof Explorer


Theorem brif2

Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024)

Ref Expression
Assertion brif2 C R if φ A B if- φ C R A C R B

Proof

Step Hyp Ref Expression
1 iftrue φ if φ A B = A
2 1 breq2d φ C R if φ A B C R A
3 iffalse ¬ φ if φ A B = B
4 3 breq2d ¬ φ C R if φ A B C R B
5 2 4 casesifp C R if φ A B if- φ C R A C R B