Metamath Proof Explorer


Theorem brimralrspcev

Description: Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022)

Ref Expression
Assertion brimralrspcev B X y Y φ A R B ψ x X y Y φ A R x ψ

Proof

Step Hyp Ref Expression
1 breq2 x = B A R x A R B
2 1 anbi2d x = B φ A R x φ A R B
3 2 rspceaimv B X y Y φ A R B ψ x X y Y φ A R x ψ