Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Binary relations
brin
Next ⟩
brdif
Metamath Proof Explorer
Ascii
Unicode
Theorem
brin
Description:
The intersection of two relations.
(Contributed by
FL
, 7-Oct-2008)
Ref
Expression
Assertion
brin
⊢
A
R
∩
S
B
↔
A
R
B
∧
A
S
B
Proof
Step
Hyp
Ref
Expression
1
elin
⊢
A
B
∈
R
∩
S
↔
A
B
∈
R
∧
A
B
∈
S
2
df-br
⊢
A
R
∩
S
B
↔
A
B
∈
R
∩
S
3
df-br
⊢
A
R
B
↔
A
B
∈
R
4
df-br
⊢
A
S
B
↔
A
B
∈
S
5
3
4
anbi12i
⊢
A
R
B
∧
A
S
B
↔
A
B
∈
R
∧
A
B
∈
S
6
1
2
5
3bitr4i
⊢
A
R
∩
S
B
↔
A
R
B
∧
A
S
B