Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
brinxp
Next ⟩
opelinxp
Metamath Proof Explorer
Ascii
Unicode
Theorem
brinxp
Description:
Intersection of binary relation with Cartesian product.
(Contributed by
NM
, 9-Mar-1997)
Ref
Expression
Assertion
brinxp
⊢
A
∈
C
∧
B
∈
D
→
A
R
B
↔
A
R
∩
C
×
D
B
Proof
Step
Hyp
Ref
Expression
1
brinxp2
⊢
A
R
∩
C
×
D
B
↔
A
∈
C
∧
B
∈
D
∧
A
R
B
2
1
baibr
⊢
A
∈
C
∧
B
∈
D
→
A
R
B
↔
A
R
∩
C
×
D
B