Metamath Proof Explorer


Theorem brlmici

Description: Prove isomorphic by an explicit isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion brlmici F R LMIso S R 𝑚 S

Proof

Step Hyp Ref Expression
1 ne0i F R LMIso S R LMIso S
2 brlmic R 𝑚 S R LMIso S
3 1 2 sylibr F R LMIso S R 𝑚 S