Metamath Proof Explorer


Theorem bropaex12

Description: Two classes related by an ordered-pair class abstraction are sets. (Contributed by AV, 21-Jan-2020)

Ref Expression
Hypothesis bropaex12.1 R = x y | ψ
Assertion bropaex12 A R B A V B V

Proof

Step Hyp Ref Expression
1 bropaex12.1 R = x y | ψ
2 df-br A R B A B R
3 1 eleq2i A B R A B x y | ψ
4 2 3 bitri A R B A B x y | ψ
5 elopaelxp A B x y | ψ A B V × V
6 4 5 sylbi A R B A B V × V
7 opelxp A B V × V A V B V
8 6 7 sylib A R B A V B V