Metamath Proof Explorer


Theorem bropfvvvvlem

Description: Lemma for bropfvvvv . (Contributed by AV, 31-Dec-2020) (Revised by AV, 16-Jan-2021)

Ref Expression
Hypotheses bropfvvvv.o O = a U b V , c W d e | φ
bropfvvvv.oo A U B S C T B O A C = d e | θ
Assertion bropfvvvvlem B C S × T D B O A C E A U B S C T D V E V

Proof

Step Hyp Ref Expression
1 bropfvvvv.o O = a U b V , c W d e | φ
2 bropfvvvv.oo A U B S C T B O A C = d e | θ
3 opelxp B C S × T B S C T
4 brne0 D B O A C E B O A C
5 2 3expb A U B S C T B O A C = d e | θ
6 5 breqd A U B S C T D B O A C E D d e | θ E
7 brabv D d e | θ E D V E V
8 7 anim2i A U D d e | θ E A U D V E V
9 8 ex A U D d e | θ E A U D V E V
10 9 adantr A U B S C T D d e | θ E A U D V E V
11 6 10 sylbid A U B S C T D B O A C E A U D V E V
12 11 ex A U B S C T D B O A C E A U D V E V
13 12 com23 A U D B O A C E B S C T A U D V E V
14 13 a1d A U B O A C D B O A C E B S C T A U D V E V
15 1 fvmptndm ¬ A U O A =
16 df-ov B O A C = O A B C
17 fveq1 O A = O A B C = B C
18 16 17 eqtrid O A = B O A C = B C
19 0fv B C =
20 18 19 eqtrdi O A = B O A C =
21 eqneqall B O A C = B O A C D B O A C E B S C T A U D V E V
22 15 20 21 3syl ¬ A U B O A C D B O A C E B S C T A U D V E V
23 14 22 pm2.61i B O A C D B O A C E B S C T A U D V E V
24 4 23 mpcom D B O A C E B S C T A U D V E V
25 24 com12 B S C T D B O A C E A U D V E V
26 25 anc2ri B S C T D B O A C E A U D V E V B S C T
27 3anan32 A U B S C T D V E V A U D V E V B S C T
28 26 27 syl6ibr B S C T D B O A C E A U B S C T D V E V
29 3 28 sylbi B C S × T D B O A C E A U B S C T D V E V
30 29 imp B C S × T D B O A C E A U B S C T D V E V