Metamath Proof Explorer


Theorem broucube

Description: Brouwer - or as Kulpa calls it, "Bohl-Brouwer" - fixed point theorem for the unit cube. Theorem on Kulpa p. 548. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimir.i I = 0 1 1 N
poimir.r R = 𝑡 1 N × topGen ran .
broucube.1 φ F R 𝑡 I Cn R 𝑡 I
Assertion broucube φ c I c = F c

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimir.i I = 0 1 1 N
3 poimir.r R = 𝑡 1 N × topGen ran .
4 broucube.1 φ F R 𝑡 I Cn R 𝑡 I
5 elmapfn x 0 1 1 N x Fn 1 N
6 5 2 eleq2s x I x Fn 1 N
7 6 adantl φ x I x Fn 1 N
8 ovex 1 N V
9 retopon topGen ran . TopOn
10 3 pttoponconst 1 N V topGen ran . TopOn R TopOn 1 N
11 8 9 10 mp2an R TopOn 1 N
12 reex V
13 unitssre 0 1
14 mapss V 0 1 0 1 1 N 1 N
15 12 13 14 mp2an 0 1 1 N 1 N
16 2 15 eqsstri I 1 N
17 resttopon R TopOn 1 N I 1 N R 𝑡 I TopOn I
18 11 16 17 mp2an R 𝑡 I TopOn I
19 18 toponunii I = R 𝑡 I
20 19 19 cnf F R 𝑡 I Cn R 𝑡 I F : I I
21 4 20 syl φ F : I I
22 21 ffvelrnda φ x I F x I
23 elmapfn F x 0 1 1 N F x Fn 1 N
24 23 2 eleq2s F x I F x Fn 1 N
25 22 24 syl φ x I F x Fn 1 N
26 ovexd φ x I 1 N V
27 inidm 1 N 1 N = 1 N
28 eqidd φ x I n 1 N x n = x n
29 eqidd φ x I n 1 N F x n = F x n
30 7 25 26 26 27 28 29 offval φ x I x f F x = n 1 N x n F x n
31 30 mpteq2dva φ x I x f F x = x I n 1 N x n F x n
32 18 a1i φ R 𝑡 I TopOn I
33 ovexd φ 1 N V
34 retop topGen ran . Top
35 34 fconst6 1 N × topGen ran . : 1 N Top
36 35 a1i φ 1 N × topGen ran . : 1 N Top
37 18 a1i φ n 1 N R 𝑡 I TopOn I
38 eqid TopOpen fld = TopOpen fld
39 38 cnfldtop TopOpen fld Top
40 cnrest2r TopOpen fld Top R 𝑡 I Cn TopOpen fld 𝑡 R 𝑡 I Cn TopOpen fld
41 39 40 ax-mp R 𝑡 I Cn TopOpen fld 𝑡 R 𝑡 I Cn TopOpen fld
42 resmpt I 1 N x 1 N x n I = x I x n
43 16 42 ax-mp x 1 N x n I = x I x n
44 11 toponunii 1 N = R
45 44 3 ptpjcn 1 N V 1 N × topGen ran . : 1 N Top n 1 N x 1 N x n R Cn 1 N × topGen ran . n
46 8 35 45 mp3an12 n 1 N x 1 N x n R Cn 1 N × topGen ran . n
47 44 cnrest x 1 N x n R Cn 1 N × topGen ran . n I 1 N x 1 N x n I R 𝑡 I Cn 1 N × topGen ran . n
48 46 16 47 sylancl n 1 N x 1 N x n I R 𝑡 I Cn 1 N × topGen ran . n
49 43 48 eqeltrrid n 1 N x I x n R 𝑡 I Cn 1 N × topGen ran . n
50 fvex topGen ran . V
51 50 fvconst2 n 1 N 1 N × topGen ran . n = topGen ran .
52 38 tgioo2 topGen ran . = TopOpen fld 𝑡
53 51 52 syl6eq n 1 N 1 N × topGen ran . n = TopOpen fld 𝑡
54 53 oveq2d n 1 N R 𝑡 I Cn 1 N × topGen ran . n = R 𝑡 I Cn TopOpen fld 𝑡
55 49 54 eleqtrd n 1 N x I x n R 𝑡 I Cn TopOpen fld 𝑡
56 41 55 sseldi n 1 N x I x n R 𝑡 I Cn TopOpen fld
57 56 adantl φ n 1 N x I x n R 𝑡 I Cn TopOpen fld
58 21 feqmptd φ F = x I F x
59 58 4 eqeltrrd φ x I F x R 𝑡 I Cn R 𝑡 I
60 59 adantr φ n 1 N x I F x R 𝑡 I Cn R 𝑡 I
61 fveq1 x = z x n = z n
62 61 cbvmptv x I x n = z I z n
63 62 57 eqeltrrid φ n 1 N z I z n R 𝑡 I Cn TopOpen fld
64 fveq1 z = F x z n = F x n
65 37 60 37 63 64 cnmpt11 φ n 1 N x I F x n R 𝑡 I Cn TopOpen fld
66 38 subcn TopOpen fld × t TopOpen fld Cn TopOpen fld
67 66 a1i φ n 1 N TopOpen fld × t TopOpen fld Cn TopOpen fld
68 37 57 65 67 cnmpt12f φ n 1 N x I x n F x n R 𝑡 I Cn TopOpen fld
69 elmapi x 0 1 1 N x : 1 N 0 1
70 69 2 eleq2s x I x : 1 N 0 1
71 70 ffvelrnda x I n 1 N x n 0 1
72 13 71 sseldi x I n 1 N x n
73 72 adantll φ x I n 1 N x n
74 elmapi F x 0 1 1 N F x : 1 N 0 1
75 74 2 eleq2s F x I F x : 1 N 0 1
76 22 75 syl φ x I F x : 1 N 0 1
77 76 ffvelrnda φ x I n 1 N F x n 0 1
78 13 77 sseldi φ x I n 1 N F x n
79 73 78 resubcld φ x I n 1 N x n F x n
80 79 an32s φ n 1 N x I x n F x n
81 80 fmpttd φ n 1 N x I x n F x n : I
82 frn x I x n F x n : I ran x I x n F x n
83 38 cnfldtopon TopOpen fld TopOn
84 ax-resscn
85 cnrest2 TopOpen fld TopOn ran x I x n F x n x I x n F x n R 𝑡 I Cn TopOpen fld x I x n F x n R 𝑡 I Cn TopOpen fld 𝑡
86 83 84 85 mp3an13 ran x I x n F x n x I x n F x n R 𝑡 I Cn TopOpen fld x I x n F x n R 𝑡 I Cn TopOpen fld 𝑡
87 81 82 86 3syl φ n 1 N x I x n F x n R 𝑡 I Cn TopOpen fld x I x n F x n R 𝑡 I Cn TopOpen fld 𝑡
88 68 87 mpbid φ n 1 N x I x n F x n R 𝑡 I Cn TopOpen fld 𝑡
89 54 adantl φ n 1 N R 𝑡 I Cn 1 N × topGen ran . n = R 𝑡 I Cn TopOpen fld 𝑡
90 88 89 eleqtrrd φ n 1 N x I x n F x n R 𝑡 I Cn 1 N × topGen ran . n
91 3 32 33 36 90 ptcn φ x I n 1 N x n F x n R 𝑡 I Cn R
92 31 91 eqeltrd φ x I x f F x R 𝑡 I Cn R
93 simpr2 φ n 1 N z I z n = 0 z I
94 id x = z x = z
95 fveq2 x = z F x = F z
96 94 95 oveq12d x = z x f F x = z f F z
97 eqid x I x f F x = x I x f F x
98 ovex z f F z V
99 96 97 98 fvmpt z I x I x f F x z = z f F z
100 99 fveq1d z I x I x f F x z n = z f F z n
101 93 100 syl φ n 1 N z I z n = 0 x I x f F x z n = z f F z n
102 elmapfn z 0 1 1 N z Fn 1 N
103 102 2 eleq2s z I z Fn 1 N
104 103 adantl φ z n = 0 z I z Fn 1 N
105 21 ffvelrnda φ z I F z I
106 elmapfn F z 0 1 1 N F z Fn 1 N
107 106 2 eleq2s F z I F z Fn 1 N
108 105 107 syl φ z I F z Fn 1 N
109 108 adantlr φ z n = 0 z I F z Fn 1 N
110 ovexd φ z n = 0 z I 1 N V
111 simpllr φ z n = 0 z I n 1 N z n = 0
112 eqidd φ z n = 0 z I n 1 N F z n = F z n
113 104 109 110 110 27 111 112 ofval φ z n = 0 z I n 1 N z f F z n = 0 F z n
114 df-neg F z n = 0 F z n
115 113 114 syl6eqr φ z n = 0 z I n 1 N z f F z n = F z n
116 115 exp41 φ z n = 0 z I n 1 N z f F z n = F z n
117 116 com24 φ n 1 N z I z n = 0 z f F z n = F z n
118 117 3imp2 φ n 1 N z I z n = 0 z f F z n = F z n
119 101 118 eqtrd φ n 1 N z I z n = 0 x I x f F x z n = F z n
120 elmapi F z 0 1 1 N F z : 1 N 0 1
121 120 2 eleq2s F z I F z : 1 N 0 1
122 105 121 syl φ z I F z : 1 N 0 1
123 122 ffvelrnda φ z I n 1 N F z n 0 1
124 0xr 0 *
125 1xr 1 *
126 iccgelb 0 * 1 * F z n 0 1 0 F z n
127 124 125 126 mp3an12 F z n 0 1 0 F z n
128 123 127 syl φ z I n 1 N 0 F z n
129 13 123 sseldi φ z I n 1 N F z n
130 129 le0neg2d φ z I n 1 N 0 F z n F z n 0
131 128 130 mpbid φ z I n 1 N F z n 0
132 131 an32s φ n 1 N z I F z n 0
133 132 anasss φ n 1 N z I F z n 0
134 133 3adantr3 φ n 1 N z I z n = 0 F z n 0
135 119 134 eqbrtrd φ n 1 N z I z n = 0 x I x f F x z n 0
136 iccleub 0 * 1 * F z n 0 1 F z n 1
137 124 125 136 mp3an12 F z n 0 1 F z n 1
138 123 137 syl φ z I n 1 N F z n 1
139 1red φ z I n 1 N 1
140 139 129 subge0d φ z I n 1 N 0 1 F z n F z n 1
141 138 140 mpbird φ z I n 1 N 0 1 F z n
142 141 an32s φ n 1 N z I 0 1 F z n
143 142 anasss φ n 1 N z I 0 1 F z n
144 143 3adantr3 φ n 1 N z I z n = 1 0 1 F z n
145 simpr2 φ n 1 N z I z n = 1 z I
146 145 100 syl φ n 1 N z I z n = 1 x I x f F x z n = z f F z n
147 103 adantl φ z n = 1 z I z Fn 1 N
148 108 adantlr φ z n = 1 z I F z Fn 1 N
149 ovexd φ z n = 1 z I 1 N V
150 simpllr φ z n = 1 z I n 1 N z n = 1
151 eqidd φ z n = 1 z I n 1 N F z n = F z n
152 147 148 149 149 27 150 151 ofval φ z n = 1 z I n 1 N z f F z n = 1 F z n
153 152 exp41 φ z n = 1 z I n 1 N z f F z n = 1 F z n
154 153 com24 φ n 1 N z I z n = 1 z f F z n = 1 F z n
155 154 3imp2 φ n 1 N z I z n = 1 z f F z n = 1 F z n
156 146 155 eqtrd φ n 1 N z I z n = 1 x I x f F x z n = 1 F z n
157 144 156 breqtrrd φ n 1 N z I z n = 1 0 x I x f F x z n
158 1 2 3 92 135 157 poimir φ c I x I x f F x c = 1 N × 0
159 id x = c x = c
160 fveq2 x = c F x = F c
161 159 160 oveq12d x = c x f F x = c f F c
162 ovex c f F c V
163 161 97 162 fvmpt c I x I x f F x c = c f F c
164 163 adantl φ c I x I x f F x c = c f F c
165 164 eqeq1d φ c I x I x f F x c = 1 N × 0 c f F c = 1 N × 0
166 elmapfn c 0 1 1 N c Fn 1 N
167 166 2 eleq2s c I c Fn 1 N
168 167 adantl φ c I c Fn 1 N
169 21 ffvelrnda φ c I F c I
170 elmapfn F c 0 1 1 N F c Fn 1 N
171 170 2 eleq2s F c I F c Fn 1 N
172 169 171 syl φ c I F c Fn 1 N
173 ovexd φ c I 1 N V
174 eqidd φ c I n 1 N c n = c n
175 eqidd φ c I n 1 N F c n = F c n
176 168 172 173 173 27 174 175 ofval φ c I n 1 N c f F c n = c n F c n
177 c0ex 0 V
178 177 fvconst2 n 1 N 1 N × 0 n = 0
179 178 adantl φ c I n 1 N 1 N × 0 n = 0
180 176 179 eqeq12d φ c I n 1 N c f F c n = 1 N × 0 n c n F c n = 0
181 13 84 sstri 0 1
182 elmapi c 0 1 1 N c : 1 N 0 1
183 182 2 eleq2s c I c : 1 N 0 1
184 183 ffvelrnda c I n 1 N c n 0 1
185 181 184 sseldi c I n 1 N c n
186 185 adantll φ c I n 1 N c n
187 elmapi F c 0 1 1 N F c : 1 N 0 1
188 187 2 eleq2s F c I F c : 1 N 0 1
189 169 188 syl φ c I F c : 1 N 0 1
190 189 ffvelrnda φ c I n 1 N F c n 0 1
191 181 190 sseldi φ c I n 1 N F c n
192 186 191 subeq0ad φ c I n 1 N c n F c n = 0 c n = F c n
193 180 192 bitrd φ c I n 1 N c f F c n = 1 N × 0 n c n = F c n
194 193 ralbidva φ c I n 1 N c f F c n = 1 N × 0 n n 1 N c n = F c n
195 168 172 173 173 27 offn φ c I c f F c Fn 1 N
196 fnconstg 0 V 1 N × 0 Fn 1 N
197 177 196 ax-mp 1 N × 0 Fn 1 N
198 eqfnfv c f F c Fn 1 N 1 N × 0 Fn 1 N c f F c = 1 N × 0 n 1 N c f F c n = 1 N × 0 n
199 195 197 198 sylancl φ c I c f F c = 1 N × 0 n 1 N c f F c n = 1 N × 0 n
200 eqfnfv c Fn 1 N F c Fn 1 N c = F c n 1 N c n = F c n
201 168 172 200 syl2anc φ c I c = F c n 1 N c n = F c n
202 194 199 201 3bitr4d φ c I c f F c = 1 N × 0 c = F c
203 165 202 bitrd φ c I x I x f F x c = 1 N × 0 c = F c
204 203 rexbidva φ c I x I x f F x c = 1 N × 0 c I c = F c
205 158 204 mpbid φ c I c = F c