Metamath Proof Explorer


Theorem brovex

Description: A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017)

Ref Expression
Hypotheses brovex.1 O = x V , y V C
brovex.2 V V E V Rel V O E
Assertion brovex F V O E P V V E V F V P V

Proof

Step Hyp Ref Expression
1 brovex.1 O = x V , y V C
2 brovex.2 V V E V Rel V O E
3 df-br F V O E P F P V O E
4 ne0i F P V O E V O E
5 1 mpondm0 ¬ V V E V V O E =
6 5 necon1ai V O E V V E V
7 brrelex12 Rel V O E F V O E P F V P V
8 2 7 sylan V V E V F V O E P F V P V
9 id V V E V F V P V V V E V F V P V
10 8 9 syldan V V E V F V O E P V V E V F V P V
11 10 ex V V E V F V O E P V V E V F V P V
12 4 6 11 3syl F P V O E F V O E P V V E V F V P V
13 3 12 sylbi F V O E P F V O E P V V E V F V P V
14 13 pm2.43i F V O E P V V E V F V P V