Metamath Proof Explorer


Theorem brovmpoex

Description: A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017)

Ref Expression
Hypothesis brovmpoex.1 O = x V , y V z w | φ
Assertion brovmpoex F V O E P V V E V F V P V

Proof

Step Hyp Ref Expression
1 brovmpoex.1 O = x V , y V z w | φ
2 1 relmpoopab Rel V O E
3 2 a1i V V E V Rel V O E
4 1 3 brovex F V O E P V V E V F V P V