Metamath Proof Explorer


Theorem brovpreldm

Description: If a binary relation holds for the result of an operation, the operands are in the domain of the operation. (Contributed by AV, 31-Dec-2020)

Ref Expression
Assertion brovpreldm D B A C E B C dom A

Proof

Step Hyp Ref Expression
1 df-br D B A C E D E B A C
2 ne0i D E B A C B A C
3 df-ov B A C = A B C
4 ndmfv ¬ B C dom A A B C =
5 3 4 eqtrid ¬ B C dom A B A C =
6 5 necon1ai B A C B C dom A
7 2 6 syl D E B A C B C dom A
8 1 7 sylbi D B A C E B C dom A