Metamath Proof Explorer


Theorem brparts2

Description: Binary partitions relation. (Contributed by Peter Mazsa, 30-Dec-2021)

Ref Expression
Assertion brparts2 Could not format assertion : No typesetting found for |- ( ( A e. V /\ R e. W ) -> ( R Parts A <-> ( R e. Disjs /\ ( dom R /. R ) = A ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 brparts Could not format ( A e. V -> ( R Parts A <-> ( R e. Disjs /\ R DomainQss A ) ) ) : No typesetting found for |- ( A e. V -> ( R Parts A <-> ( R e. Disjs /\ R DomainQss A ) ) ) with typecode |-
2 1 adantr Could not format ( ( A e. V /\ R e. W ) -> ( R Parts A <-> ( R e. Disjs /\ R DomainQss A ) ) ) : No typesetting found for |- ( ( A e. V /\ R e. W ) -> ( R Parts A <-> ( R e. Disjs /\ R DomainQss A ) ) ) with typecode |-
3 brdmqss A V R W R DomainQss A dom R / R = A
4 3 anbi2d A V R W R Disjs R DomainQss A R Disjs dom R / R = A
5 2 4 bitrd Could not format ( ( A e. V /\ R e. W ) -> ( R Parts A <-> ( R e. Disjs /\ ( dom R /. R ) = A ) ) ) : No typesetting found for |- ( ( A e. V /\ R e. W ) -> ( R Parts A <-> ( R e. Disjs /\ ( dom R /. R ) = A ) ) ) with typecode |-