Metamath Proof Explorer


Theorem brpartspart

Description: Binary partition and the partition predicate are the same if A and R are sets. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion brpartspart Could not format assertion : No typesetting found for |- ( ( A e. V /\ R e. W ) -> ( R Parts A <-> R Part A ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 eldisjsdisj R W R Disjs Disj R
2 1 adantl A V R W R Disjs Disj R
3 brdmqssqs A V R W R DomainQss A R DomainQs A
4 2 3 anbi12d A V R W R Disjs R DomainQss A Disj R R DomainQs A
5 brparts Could not format ( A e. V -> ( R Parts A <-> ( R e. Disjs /\ R DomainQss A ) ) ) : No typesetting found for |- ( A e. V -> ( R Parts A <-> ( R e. Disjs /\ R DomainQss A ) ) ) with typecode |-
6 5 adantr Could not format ( ( A e. V /\ R e. W ) -> ( R Parts A <-> ( R e. Disjs /\ R DomainQss A ) ) ) : No typesetting found for |- ( ( A e. V /\ R e. W ) -> ( R Parts A <-> ( R e. Disjs /\ R DomainQss A ) ) ) with typecode |-
7 df-part Could not format ( R Part A <-> ( Disj R /\ R DomainQs A ) ) : No typesetting found for |- ( R Part A <-> ( Disj R /\ R DomainQs A ) ) with typecode |-
8 7 a1i Could not format ( ( A e. V /\ R e. W ) -> ( R Part A <-> ( Disj R /\ R DomainQs A ) ) ) : No typesetting found for |- ( ( A e. V /\ R e. W ) -> ( R Part A <-> ( Disj R /\ R DomainQs A ) ) ) with typecode |-
9 4 6 8 3bitr4d Could not format ( ( A e. V /\ R e. W ) -> ( R Parts A <-> R Part A ) ) : No typesetting found for |- ( ( A e. V /\ R e. W ) -> ( R Parts A <-> R Part A ) ) with typecode |-