Metamath Proof Explorer


Theorem brralrspcev

Description: Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022)

Ref Expression
Assertion brralrspcev B X y Y A R B x X y Y A R x

Proof

Step Hyp Ref Expression
1 breq2 x = B A R x A R B
2 1 ralbidv x = B y Y A R x y Y A R B
3 2 rspcev B X y Y A R B x X y Y A R x