Metamath Proof Explorer


Theorem brres

Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022)

Ref Expression
Assertion brres C V B R A C B A B R C

Proof

Step Hyp Ref Expression
1 opelres C V B C R A B A B C R
2 df-br B R A C B C R A
3 df-br B R C B C R
4 3 anbi2i B A B R C B A B C R
5 1 2 4 3bitr4g C V B R A C B A B R C