Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
brresi
Next ⟩
opres
Metamath Proof Explorer
Ascii
Unicode
Theorem
brresi
Description:
Binary relation on a restriction.
(Contributed by
NM
, 12-Dec-2006)
Ref
Expression
Hypothesis
opelresi.1
⊢
C
∈
V
Assertion
brresi
⊢
B
R
↾
A
C
↔
B
∈
A
∧
B
R
C
Proof
Step
Hyp
Ref
Expression
1
opelresi.1
⊢
C
∈
V
2
brres
⊢
C
∈
V
→
B
R
↾
A
C
↔
B
∈
A
∧
B
R
C
3
1
2
ax-mp
⊢
B
R
↾
A
C
↔
B
∈
A
∧
B
R
C