Database
BASIC ALGEBRAIC STRUCTURES
Rings
Ring homomorphisms
brric
Next ⟩
brric2
Metamath Proof Explorer
Ascii
Unicode
Theorem
brric
Description:
The relation "is isomorphic to" for (unital) rings.
(Contributed by
AV
, 24-Dec-2019)
Ref
Expression
Assertion
brric
⊢
R
≃
𝑟
S
↔
R
RingIso
S
≠
∅
Proof
Step
Hyp
Ref
Expression
1
df-ric
⊢
≃
𝑟
=
RingIso
-1
V
∖
1
𝑜
2
ovex
⊢
r
RingHom
s
∈
V
3
rabexg
⊢
r
RingHom
s
∈
V
→
h
∈
r
RingHom
s
|
h
-1
∈
s
RingHom
r
∈
V
4
2
3
mp1i
⊢
r
∈
V
∧
s
∈
V
→
h
∈
r
RingHom
s
|
h
-1
∈
s
RingHom
r
∈
V
5
4
rgen2
⊢
∀
r
∈
V
∀
s
∈
V
h
∈
r
RingHom
s
|
h
-1
∈
s
RingHom
r
∈
V
6
df-rngiso
⊢
RingIso
=
r
∈
V
,
s
∈
V
⟼
h
∈
r
RingHom
s
|
h
-1
∈
s
RingHom
r
7
6
fnmpo
⊢
∀
r
∈
V
∀
s
∈
V
h
∈
r
RingHom
s
|
h
-1
∈
s
RingHom
r
∈
V
→
RingIso
Fn
V
×
V
8
5
7
ax-mp
⊢
RingIso
Fn
V
×
V
9
1
8
brwitnlem
⊢
R
≃
𝑟
S
↔
R
RingIso
S
≠
∅