Metamath Proof Explorer


Theorem brric

Description: The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019)

Ref Expression
Assertion brric R 𝑟 S R RingIso S

Proof

Step Hyp Ref Expression
1 df-ric 𝑟 = RingIso -1 V 1 𝑜
2 ovex r RingHom s V
3 rabexg r RingHom s V h r RingHom s | h -1 s RingHom r V
4 2 3 mp1i r V s V h r RingHom s | h -1 s RingHom r V
5 4 rgen2 r V s V h r RingHom s | h -1 s RingHom r V
6 df-rngiso RingIso = r V , s V h r RingHom s | h -1 s RingHom r
7 6 fnmpo r V s V h r RingHom s | h -1 s RingHom r V RingIso Fn V × V
8 5 7 ax-mp RingIso Fn V × V
9 1 8 brwitnlem R 𝑟 S R RingIso S