Metamath Proof Explorer


Theorem brric2

Description: The relation "is isomorphic to" for (unital) rings. This theorem corresponds to Definition df-risc of the ring isomorphism relation in JM's mathbox. (Contributed by AV, 24-Dec-2019)

Ref Expression
Assertion brric2 R 𝑟 S R Ring S Ring f f R RingIso S

Proof

Step Hyp Ref Expression
1 brric R 𝑟 S R RingIso S
2 n0 R RingIso S f f R RingIso S
3 rimrhm f R RingIso S f R RingHom S
4 eqid mulGrp R = mulGrp R
5 eqid mulGrp S = mulGrp S
6 4 5 isrhm f R RingHom S R Ring S Ring f R GrpHom S f mulGrp R MndHom mulGrp S
7 6 simplbi f R RingHom S R Ring S Ring
8 3 7 syl f R RingIso S R Ring S Ring
9 8 exlimiv f f R RingIso S R Ring S Ring
10 9 pm4.71ri f f R RingIso S R Ring S Ring f f R RingIso S
11 1 2 10 3bitri R 𝑟 S R Ring S Ring f f R RingIso S