Metamath Proof Explorer


Theorem brrpssg

Description: The proper subset relation on sets is the same as class proper subsethood. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion brrpssg B V A [⊂] B A B

Proof

Step Hyp Ref Expression
1 elex B V B V
2 relrpss Rel [⊂]
3 2 brrelex1i A [⊂] B A V
4 1 3 anim12i B V A [⊂] B B V A V
5 1 adantr B V A B B V
6 pssss A B A B
7 ssexg A B B V A V
8 6 1 7 syl2anr B V A B A V
9 5 8 jca B V A B B V A V
10 psseq1 x = A x y A y
11 psseq2 y = B A y A B
12 df-rpss [⊂] = x y | x y
13 10 11 12 brabg A V B V A [⊂] B A B
14 13 ancoms B V A V A [⊂] B A B
15 4 9 14 pm5.21nd B V A [⊂] B A B