Metamath Proof Explorer


Theorem brsdom

Description: Strict dominance relation, meaning " B is strictly greater in size than A ". Definition of Mendelson p. 255. (Contributed by NM, 25-Jun-1998)

Ref Expression
Assertion brsdom A B A B ¬ A B

Proof

Step Hyp Ref Expression
1 df-sdom =
2 1 eleq2i A B A B
3 df-br A B A B
4 df-br A B A B
5 df-br A B A B
6 5 notbii ¬ A B ¬ A B
7 4 6 anbi12i A B ¬ A B A B ¬ A B
8 eldif A B A B ¬ A B
9 7 8 bitr4i A B ¬ A B A B
10 2 3 9 3bitr4i A B A B ¬ A B