Metamath Proof Explorer


Theorem brsdom2

Description: Alternate definition of strict dominance. Definition 3 of Suppes p. 97. (Contributed by NM, 27-Jul-2004)

Ref Expression
Hypotheses brsdom2.1 A V
brsdom2.2 B V
Assertion brsdom2 A B A B ¬ B A

Proof

Step Hyp Ref Expression
1 brsdom2.1 A V
2 brsdom2.2 B V
3 dfsdom2 = -1
4 3 eleq2i A B A B -1
5 df-br A B A B
6 df-br A B A B
7 df-br B A B A
8 1 2 opelcnv A B -1 B A
9 7 8 bitr4i B A A B -1
10 9 notbii ¬ B A ¬ A B -1
11 6 10 anbi12i A B ¬ B A A B ¬ A B -1
12 eldif A B -1 A B ¬ A B -1
13 11 12 bitr4i A B ¬ B A A B -1
14 4 5 13 3bitr4i A B A B ¬ B A