Metamath Proof Explorer


Theorem brssc

Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion brssc H cat J t J Fn t × t s 𝒫 t H x s × s 𝒫 J x

Proof

Step Hyp Ref Expression
1 sscrel Rel cat
2 1 brrelex12i H cat J H V J V
3 vex t V
4 3 3 xpex t × t V
5 fnex J Fn t × t t × t V J V
6 4 5 mpan2 J Fn t × t J V
7 elex H x s × s 𝒫 J x H V
8 7 rexlimivw s 𝒫 t H x s × s 𝒫 J x H V
9 6 8 anim12ci J Fn t × t s 𝒫 t H x s × s 𝒫 J x H V J V
10 9 exlimiv t J Fn t × t s 𝒫 t H x s × s 𝒫 J x H V J V
11 simpr h = H j = J j = J
12 11 fneq1d h = H j = J j Fn t × t J Fn t × t
13 simpl h = H j = J h = H
14 11 fveq1d h = H j = J j x = J x
15 14 pweqd h = H j = J 𝒫 j x = 𝒫 J x
16 15 ixpeq2dv h = H j = J x s × s 𝒫 j x = x s × s 𝒫 J x
17 13 16 eleq12d h = H j = J h x s × s 𝒫 j x H x s × s 𝒫 J x
18 17 rexbidv h = H j = J s 𝒫 t h x s × s 𝒫 j x s 𝒫 t H x s × s 𝒫 J x
19 12 18 anbi12d h = H j = J j Fn t × t s 𝒫 t h x s × s 𝒫 j x J Fn t × t s 𝒫 t H x s × s 𝒫 J x
20 19 exbidv h = H j = J t j Fn t × t s 𝒫 t h x s × s 𝒫 j x t J Fn t × t s 𝒫 t H x s × s 𝒫 J x
21 df-ssc cat = h j | t j Fn t × t s 𝒫 t h x s × s 𝒫 j x
22 20 21 brabga H V J V H cat J t J Fn t × t s 𝒫 t H x s × s 𝒫 J x
23 2 10 22 pm5.21nii H cat J t J Fn t × t s 𝒫 t H x s × s 𝒫 J x