Metamath Proof Explorer


Theorem brsuccf

Description: Binary relation form of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014)

Ref Expression
Hypotheses brsuccf.1 A V
brsuccf.2 B V
Assertion brsuccf A 𝖲𝗎𝖼𝖼 B B = suc A

Proof

Step Hyp Ref Expression
1 brsuccf.1 A V
2 brsuccf.2 B V
3 df-succf 𝖲𝗎𝖼𝖼 = 𝖢𝗎𝗉 I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
4 3 breqi A 𝖲𝗎𝖼𝖼 B A 𝖢𝗎𝗉 I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 B
5 1 2 brco A 𝖢𝗎𝗉 I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 B x A I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x x 𝖢𝗎𝗉 B
6 1 2 lemsuccf x A I 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x x 𝖢𝗎𝗉 B B = suc A
7 4 5 6 3bitri A 𝖲𝗎𝖼𝖼 B B = suc A