Metamath Proof Explorer


Theorem brsymdif

Description: Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Assertion brsymdif ARSB¬ARBASB

Proof

Step Hyp Ref Expression
1 df-br ARSBABRS
2 elsymdif ABRS¬ABRABS
3 df-br ARBABR
4 df-br ASBABS
5 3 4 bibi12i ARBASBABRABS
6 2 5 xchbinxr ABRS¬ARBASB
7 1 6 bitri ARSB¬ARBASB