Metamath Proof Explorer


Theorem brsymdif

Description: Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Assertion brsymdif A R S B ¬ A R B A S B

Proof

Step Hyp Ref Expression
1 df-br A R S B A B R S
2 elsymdif A B R S ¬ A B R A B S
3 df-br A R B A B R
4 df-br A S B A B S
5 3 4 bibi12i A R B A S B A B R A B S
6 2 5 xchbinxr A B R S ¬ A R B A S B
7 1 6 bitri A R S B ¬ A R B A S B