Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Binary relations
brun
Next ⟩
brin
Metamath Proof Explorer
Ascii
Unicode
Theorem
brun
Description:
The union of two binary relations.
(Contributed by
NM
, 21-Dec-2008)
Ref
Expression
Assertion
brun
⊢
A
R
∪
S
B
↔
A
R
B
∨
A
S
B
Proof
Step
Hyp
Ref
Expression
1
elun
⊢
A
B
∈
R
∪
S
↔
A
B
∈
R
∨
A
B
∈
S
2
df-br
⊢
A
R
∪
S
B
↔
A
B
∈
R
∪
S
3
df-br
⊢
A
R
B
↔
A
B
∈
R
4
df-br
⊢
A
S
B
↔
A
B
∈
S
5
3
4
orbi12i
⊢
A
R
B
∨
A
S
B
↔
A
B
∈
R
∨
A
B
∈
S
6
1
2
5
3bitr4i
⊢
A
R
∪
S
B
↔
A
R
B
∨
A
S
B