Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|
2 |
|
0wdom |
|
3 |
|
breq1 |
|
4 |
2 3
|
syl5ibrcom |
|
5 |
4
|
imp |
|
6 |
|
0elpw |
|
7 |
|
f1o0 |
|
8 |
|
f1ofo |
|
9 |
|
0ex |
|
10 |
|
foeq1 |
|
11 |
9 10
|
spcev |
|
12 |
7 8 11
|
mp2b |
|
13 |
|
foeq2 |
|
14 |
13
|
exbidv |
|
15 |
14
|
rspcev |
|
16 |
6 12 15
|
mp2an |
|
17 |
|
foeq3 |
|
18 |
17
|
exbidv |
|
19 |
18
|
rexbidv |
|
20 |
16 19
|
mpbiri |
|
21 |
20
|
adantl |
|
22 |
5 21
|
2thd |
|
23 |
|
brwdomn0 |
|
24 |
23
|
adantl |
|
25 |
|
foeq1 |
|
26 |
25
|
cbvexvw |
|
27 |
|
pwidg |
|
28 |
27
|
ad2antrr |
|
29 |
|
foeq2 |
|
30 |
29
|
exbidv |
|
31 |
30
|
rspcev |
|
32 |
28 31
|
sylancom |
|
33 |
32
|
ex |
|
34 |
26 33
|
syl5bi |
|
35 |
|
n0 |
|
36 |
35
|
biimpi |
|
37 |
36
|
ad2antlr |
|
38 |
|
vex |
|
39 |
|
difexg |
|
40 |
|
snex |
|
41 |
|
xpexg |
|
42 |
39 40 41
|
sylancl |
|
43 |
|
unexg |
|
44 |
38 42 43
|
sylancr |
|
45 |
44
|
adantr |
|
46 |
45
|
ad2antrr |
|
47 |
|
fofn |
|
48 |
47
|
adantl |
|
49 |
48
|
ad2antlr |
|
50 |
|
vex |
|
51 |
|
fnconstg |
|
52 |
50 51
|
mp1i |
|
53 |
|
disjdif |
|
54 |
53
|
a1i |
|
55 |
49 52 54
|
fnund |
|
56 |
|
elpwi |
|
57 |
|
undif |
|
58 |
56 57
|
sylib |
|
59 |
58
|
ad2antrl |
|
60 |
59
|
adantr |
|
61 |
60
|
fneq2d |
|
62 |
55 61
|
mpbid |
|
63 |
|
rnun |
|
64 |
|
forn |
|
65 |
64
|
ad2antll |
|
66 |
65
|
adantr |
|
67 |
66
|
uneq1d |
|
68 |
|
fconst6g |
|
69 |
68
|
frnd |
|
70 |
69
|
adantl |
|
71 |
|
ssequn2 |
|
72 |
70 71
|
sylib |
|
73 |
67 72
|
eqtrd |
|
74 |
63 73
|
eqtrid |
|
75 |
|
df-fo |
|
76 |
62 74 75
|
sylanbrc |
|
77 |
|
foeq1 |
|
78 |
46 76 77
|
spcedv |
|
79 |
37 78
|
exlimddv |
|
80 |
79
|
expr |
|
81 |
80
|
exlimdv |
|
82 |
81
|
rexlimdva |
|
83 |
34 82
|
impbid |
|
84 |
24 83
|
bitrd |
|
85 |
22 84
|
pm2.61dane |
|
86 |
1 85
|
syl |
|