| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|
| 2 |
|
0wdom |
|
| 3 |
|
breq1 |
|
| 4 |
2 3
|
syl5ibrcom |
|
| 5 |
4
|
imp |
|
| 6 |
|
0elpw |
|
| 7 |
|
f1o0 |
|
| 8 |
|
f1ofo |
|
| 9 |
|
0ex |
|
| 10 |
|
foeq1 |
|
| 11 |
9 10
|
spcev |
|
| 12 |
7 8 11
|
mp2b |
|
| 13 |
|
foeq2 |
|
| 14 |
13
|
exbidv |
|
| 15 |
14
|
rspcev |
|
| 16 |
6 12 15
|
mp2an |
|
| 17 |
|
foeq3 |
|
| 18 |
17
|
exbidv |
|
| 19 |
18
|
rexbidv |
|
| 20 |
16 19
|
mpbiri |
|
| 21 |
20
|
adantl |
|
| 22 |
5 21
|
2thd |
|
| 23 |
|
brwdomn0 |
|
| 24 |
23
|
adantl |
|
| 25 |
|
foeq1 |
|
| 26 |
25
|
cbvexvw |
|
| 27 |
|
pwidg |
|
| 28 |
27
|
ad2antrr |
|
| 29 |
|
foeq2 |
|
| 30 |
29
|
exbidv |
|
| 31 |
30
|
rspcev |
|
| 32 |
28 31
|
sylancom |
|
| 33 |
32
|
ex |
|
| 34 |
26 33
|
biimtrid |
|
| 35 |
|
n0 |
|
| 36 |
35
|
biimpi |
|
| 37 |
36
|
ad2antlr |
|
| 38 |
|
vex |
|
| 39 |
|
difexg |
|
| 40 |
|
vsnex |
|
| 41 |
|
xpexg |
|
| 42 |
39 40 41
|
sylancl |
|
| 43 |
|
unexg |
|
| 44 |
38 42 43
|
sylancr |
|
| 45 |
44
|
adantr |
|
| 46 |
45
|
ad2antrr |
|
| 47 |
|
fofn |
|
| 48 |
47
|
adantl |
|
| 49 |
48
|
ad2antlr |
|
| 50 |
|
vex |
|
| 51 |
|
fnconstg |
|
| 52 |
50 51
|
mp1i |
|
| 53 |
|
disjdif |
|
| 54 |
53
|
a1i |
|
| 55 |
49 52 54
|
fnund |
|
| 56 |
|
elpwi |
|
| 57 |
|
undif |
|
| 58 |
56 57
|
sylib |
|
| 59 |
58
|
ad2antrl |
|
| 60 |
59
|
adantr |
|
| 61 |
60
|
fneq2d |
|
| 62 |
55 61
|
mpbid |
|
| 63 |
|
rnun |
|
| 64 |
|
forn |
|
| 65 |
64
|
ad2antll |
|
| 66 |
65
|
adantr |
|
| 67 |
66
|
uneq1d |
|
| 68 |
|
fconst6g |
|
| 69 |
68
|
frnd |
|
| 70 |
69
|
adantl |
|
| 71 |
|
ssequn2 |
|
| 72 |
70 71
|
sylib |
|
| 73 |
67 72
|
eqtrd |
|
| 74 |
63 73
|
eqtrid |
|
| 75 |
|
df-fo |
|
| 76 |
62 74 75
|
sylanbrc |
|
| 77 |
|
foeq1 |
|
| 78 |
46 76 77
|
spcedv |
|
| 79 |
37 78
|
exlimddv |
|
| 80 |
79
|
expr |
|
| 81 |
80
|
exlimdv |
|
| 82 |
81
|
rexlimdva |
|
| 83 |
34 82
|
impbid |
|
| 84 |
24 83
|
bitrd |
|
| 85 |
22 84
|
pm2.61dane |
|
| 86 |
1 85
|
syl |
|