Metamath Proof Explorer


Theorem brwdomi

Description: Property of weak dominance, forward direction only. (Contributed by Mario Carneiro, 5-May-2015)

Ref Expression
Assertion brwdomi X * Y X = z z : Y onto X

Proof

Step Hyp Ref Expression
1 relwdom Rel *
2 1 brrelex2i X * Y Y V
3 brwdom Y V X * Y X = z z : Y onto X
4 2 3 syl X * Y X * Y X = z z : Y onto X
5 4 ibi X * Y X = z z : Y onto X