Metamath Proof Explorer


Theorem brwitnlem

Description: Lemma for relations which assert the existence of a witness in a two-parameter set. (Contributed by Stefan O'Rear, 25-Jan-2015) (Revised by Mario Carneiro, 23-Aug-2015)

Ref Expression
Hypotheses brwitnlem.r R = O -1 V 1 𝑜
brwitnlem.o O Fn X
Assertion brwitnlem A R B A O B

Proof

Step Hyp Ref Expression
1 brwitnlem.r R = O -1 V 1 𝑜
2 brwitnlem.o O Fn X
3 fvex O A B V
4 dif1o O A B V 1 𝑜 O A B V O A B
5 3 4 mpbiran O A B V 1 𝑜 O A B
6 5 anbi2i A B X O A B V 1 𝑜 A B X O A B
7 elpreima O Fn X A B O -1 V 1 𝑜 A B X O A B V 1 𝑜
8 2 7 ax-mp A B O -1 V 1 𝑜 A B X O A B V 1 𝑜
9 ndmfv ¬ A B dom O O A B =
10 9 necon1ai O A B A B dom O
11 2 fndmi dom O = X
12 10 11 eleqtrdi O A B A B X
13 12 pm4.71ri O A B A B X O A B
14 6 8 13 3bitr4i A B O -1 V 1 𝑜 O A B
15 1 breqi A R B A O -1 V 1 𝑜 B
16 df-br A O -1 V 1 𝑜 B A B O -1 V 1 𝑜
17 15 16 bitri A R B A B O -1 V 1 𝑜
18 df-ov A O B = O A B
19 18 neeq1i A O B O A B
20 14 17 19 3bitr4i A R B A O B