Metamath Proof Explorer


Theorem btwnhl

Description: Swap betweenness for a half-line. (Contributed by Thierry Arnoux, 2-Mar-2020)

Ref Expression
Hypotheses ishlg.p P = Base G
ishlg.i I = Itv G
ishlg.k K = hl 𝒢 G
ishlg.a φ A P
ishlg.b φ B P
ishlg.c φ C P
hlln.1 φ G 𝒢 Tarski
hltr.d φ D P
btwnhl.1 φ A K D B
btwnhl.3 φ D A I C
Assertion btwnhl φ D B I C

Proof

Step Hyp Ref Expression
1 ishlg.p P = Base G
2 ishlg.i I = Itv G
3 ishlg.k K = hl 𝒢 G
4 ishlg.a φ A P
5 ishlg.b φ B P
6 ishlg.c φ C P
7 hlln.1 φ G 𝒢 Tarski
8 hltr.d φ D P
9 btwnhl.1 φ A K D B
10 btwnhl.3 φ D A I C
11 eqid dist G = dist G
12 7 adantr φ A D I B G 𝒢 Tarski
13 6 adantr φ A D I B C P
14 8 adantr φ A D I B D P
15 5 adantr φ A D I B B P
16 4 adantr φ A D I B A P
17 1 2 3 4 5 8 7 ishlg φ A K D B A D B D A D I B B D I A
18 9 17 mpbid φ A D B D A D I B B D I A
19 18 simp1d φ A D
20 19 necomd φ D A
21 20 adantr φ A D I B D A
22 10 adantr φ A D I B D A I C
23 1 11 2 12 16 14 13 22 tgbtwncom φ A D I B D C I A
24 simpr φ A D I B A D I B
25 1 11 2 12 13 14 16 15 21 23 24 tgbtwnouttr φ A D I B D C I B
26 1 11 2 12 13 14 15 25 tgbtwncom φ A D I B D B I C
27 7 adantr φ B D I A G 𝒢 Tarski
28 4 adantr φ B D I A A P
29 5 adantr φ B D I A B P
30 8 adantr φ B D I A D P
31 6 adantr φ B D I A C P
32 simpr φ B D I A B D I A
33 1 11 2 27 30 29 28 32 tgbtwncom φ B D I A B A I D
34 10 adantr φ B D I A D A I C
35 1 11 2 27 28 29 30 31 33 34 tgbtwnexch3 φ B D I A D B I C
36 18 simp3d φ A D I B B D I A
37 26 35 36 mpjaodan φ D B I C