Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
|
2 |
|
ishlg.i |
|
3 |
|
ishlg.k |
|
4 |
|
ishlg.a |
|
5 |
|
ishlg.b |
|
6 |
|
ishlg.c |
|
7 |
|
hlln.1 |
|
8 |
|
hltr.d |
|
9 |
|
btwnhl.1 |
|
10 |
|
btwnhl.3 |
|
11 |
|
eqid |
|
12 |
7
|
adantr |
|
13 |
6
|
adantr |
|
14 |
8
|
adantr |
|
15 |
5
|
adantr |
|
16 |
4
|
adantr |
|
17 |
1 2 3 4 5 8 7
|
ishlg |
|
18 |
9 17
|
mpbid |
|
19 |
18
|
simp1d |
|
20 |
19
|
necomd |
|
21 |
20
|
adantr |
|
22 |
10
|
adantr |
|
23 |
1 11 2 12 16 14 13 22
|
tgbtwncom |
|
24 |
|
simpr |
|
25 |
1 11 2 12 13 14 16 15 21 23 24
|
tgbtwnouttr |
|
26 |
1 11 2 12 13 14 15 25
|
tgbtwncom |
|
27 |
7
|
adantr |
|
28 |
4
|
adantr |
|
29 |
5
|
adantr |
|
30 |
8
|
adantr |
|
31 |
6
|
adantr |
|
32 |
|
simpr |
|
33 |
1 11 2 27 30 29 28 32
|
tgbtwncom |
|
34 |
10
|
adantr |
|
35 |
1 11 2 27 28 29 30 31 33 34
|
tgbtwnexch3 |
|
36 |
18
|
simp3d |
|
37 |
26 35 36
|
mpjaodan |
|