Metamath Proof Explorer


Theorem btwnhl1

Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishlg.p P = Base G
ishlg.i I = Itv G
ishlg.k K = hl 𝒢 G
ishlg.a φ A P
ishlg.b φ B P
ishlg.c φ C P
hlln.1 φ G 𝒢 Tarski
hltr.d φ D P
btwnhl1.1 φ C A I B
btwnhl1.2 φ A B
btwnhl1.3 φ C A
Assertion btwnhl1 φ C K A B

Proof

Step Hyp Ref Expression
1 ishlg.p P = Base G
2 ishlg.i I = Itv G
3 ishlg.k K = hl 𝒢 G
4 ishlg.a φ A P
5 ishlg.b φ B P
6 ishlg.c φ C P
7 hlln.1 φ G 𝒢 Tarski
8 hltr.d φ D P
9 btwnhl1.1 φ C A I B
10 btwnhl1.2 φ A B
11 btwnhl1.3 φ C A
12 10 necomd φ B A
13 9 orcd φ C A I B B A I C
14 1 2 3 6 5 4 7 ishlg φ C K A B C A B A C A I B B A I C
15 11 12 13 14 mpbir3and φ C K A B