Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Rays
btwnhl1
Next ⟩
btwnhl2
Metamath Proof Explorer
Ascii
Unicode
Theorem
btwnhl1
Description:
Deduce half-line from betweenness.
(Contributed by
Thierry Arnoux
, 4-Mar-2020)
Ref
Expression
Hypotheses
ishlg.p
⊢
P
=
Base
G
ishlg.i
⊢
I
=
Itv
⁡
G
ishlg.k
⊢
K
=
hl
𝒢
⁡
G
ishlg.a
⊢
φ
→
A
∈
P
ishlg.b
⊢
φ
→
B
∈
P
ishlg.c
⊢
φ
→
C
∈
P
hlln.1
⊢
φ
→
G
∈
𝒢
Tarski
hltr.d
⊢
φ
→
D
∈
P
btwnhl1.1
⊢
φ
→
C
∈
A
I
B
btwnhl1.2
⊢
φ
→
A
≠
B
btwnhl1.3
⊢
φ
→
C
≠
A
Assertion
btwnhl1
⊢
φ
→
C
K
⁡
A
B
Proof
Step
Hyp
Ref
Expression
1
ishlg.p
⊢
P
=
Base
G
2
ishlg.i
⊢
I
=
Itv
⁡
G
3
ishlg.k
⊢
K
=
hl
𝒢
⁡
G
4
ishlg.a
⊢
φ
→
A
∈
P
5
ishlg.b
⊢
φ
→
B
∈
P
6
ishlg.c
⊢
φ
→
C
∈
P
7
hlln.1
⊢
φ
→
G
∈
𝒢
Tarski
8
hltr.d
⊢
φ
→
D
∈
P
9
btwnhl1.1
⊢
φ
→
C
∈
A
I
B
10
btwnhl1.2
⊢
φ
→
A
≠
B
11
btwnhl1.3
⊢
φ
→
C
≠
A
12
10
necomd
⊢
φ
→
B
≠
A
13
9
orcd
⊢
φ
→
C
∈
A
I
B
∨
B
∈
A
I
C
14
1
2
3
6
5
4
7
ishlg
⊢
φ
→
C
K
⁡
A
B
↔
C
≠
A
∧
B
≠
A
∧
C
∈
A
I
B
∨
B
∈
A
I
C
15
11
12
13
14
mpbir3and
⊢
φ
→
C
K
⁡
A
B