Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Rays
btwnhl2
Next ⟩
btwnhl
Metamath Proof Explorer
Ascii
Unicode
Theorem
btwnhl2
Description:
Deduce half-line from betweenness.
(Contributed by
Thierry Arnoux
, 4-Mar-2020)
Ref
Expression
Hypotheses
ishlg.p
⊢
P
=
Base
G
ishlg.i
⊢
I
=
Itv
⁡
G
ishlg.k
⊢
K
=
hl
𝒢
⁡
G
ishlg.a
⊢
φ
→
A
∈
P
ishlg.b
⊢
φ
→
B
∈
P
ishlg.c
⊢
φ
→
C
∈
P
hlln.1
⊢
φ
→
G
∈
𝒢
Tarski
hltr.d
⊢
φ
→
D
∈
P
btwnhl1.1
⊢
φ
→
C
∈
A
I
B
btwnhl1.2
⊢
φ
→
A
≠
B
btwnhl2.3
⊢
φ
→
C
≠
B
Assertion
btwnhl2
⊢
φ
→
C
K
⁡
B
A
Proof
Step
Hyp
Ref
Expression
1
ishlg.p
⊢
P
=
Base
G
2
ishlg.i
⊢
I
=
Itv
⁡
G
3
ishlg.k
⊢
K
=
hl
𝒢
⁡
G
4
ishlg.a
⊢
φ
→
A
∈
P
5
ishlg.b
⊢
φ
→
B
∈
P
6
ishlg.c
⊢
φ
→
C
∈
P
7
hlln.1
⊢
φ
→
G
∈
𝒢
Tarski
8
hltr.d
⊢
φ
→
D
∈
P
9
btwnhl1.1
⊢
φ
→
C
∈
A
I
B
10
btwnhl1.2
⊢
φ
→
A
≠
B
11
btwnhl2.3
⊢
φ
→
C
≠
B
12
eqid
⊢
dist
⁡
G
=
dist
⁡
G
13
1
12
2
7
4
6
5
9
tgbtwncom
⊢
φ
→
C
∈
B
I
A
14
13
orcd
⊢
φ
→
C
∈
B
I
A
∨
A
∈
B
I
C
15
1
2
3
6
4
5
7
ishlg
⊢
φ
→
C
K
⁡
B
A
↔
C
≠
B
∧
A
≠
B
∧
C
∈
B
I
A
∨
A
∈
B
I
C
16
11
10
14
15
mpbir3and
⊢
φ
→
C
K
⁡
B
A