Metamath Proof Explorer


Theorem btwnhl2

Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishlg.p P = Base G
ishlg.i I = Itv G
ishlg.k K = hl 𝒢 G
ishlg.a φ A P
ishlg.b φ B P
ishlg.c φ C P
hlln.1 φ G 𝒢 Tarski
hltr.d φ D P
btwnhl1.1 φ C A I B
btwnhl1.2 φ A B
btwnhl2.3 φ C B
Assertion btwnhl2 φ C K B A

Proof

Step Hyp Ref Expression
1 ishlg.p P = Base G
2 ishlg.i I = Itv G
3 ishlg.k K = hl 𝒢 G
4 ishlg.a φ A P
5 ishlg.b φ B P
6 ishlg.c φ C P
7 hlln.1 φ G 𝒢 Tarski
8 hltr.d φ D P
9 btwnhl1.1 φ C A I B
10 btwnhl1.2 φ A B
11 btwnhl2.3 φ C B
12 eqid dist G = dist G
13 1 12 2 7 4 6 5 9 tgbtwncom φ C B I A
14 13 orcd φ C B I A A B I C
15 1 2 3 6 4 5 7 ishlg φ C K B A C B A B C B I A A B I C
16 11 10 14 15 mpbir3and φ C K B A