Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Lines
btwnlng1
Next ⟩
btwnlng2
Metamath Proof Explorer
Ascii
Unicode
Theorem
btwnlng1
Description:
Betweenness implies colinearity.
(Contributed by
Thierry Arnoux
, 28-Mar-2019)
Ref
Expression
Hypotheses
btwnlng1.p
⊢
P
=
Base
G
btwnlng1.i
⊢
I
=
Itv
⁡
G
btwnlng1.l
⊢
L
=
Line
𝒢
⁡
G
btwnlng1.g
⊢
φ
→
G
∈
𝒢
Tarski
btwnlng1.x
⊢
φ
→
X
∈
P
btwnlng1.y
⊢
φ
→
Y
∈
P
btwnlng1.z
⊢
φ
→
Z
∈
P
btwnlng1.d
⊢
φ
→
X
≠
Y
btwnlng1.1
⊢
φ
→
Z
∈
X
I
Y
Assertion
btwnlng1
⊢
φ
→
Z
∈
X
L
Y
Proof
Step
Hyp
Ref
Expression
1
btwnlng1.p
⊢
P
=
Base
G
2
btwnlng1.i
⊢
I
=
Itv
⁡
G
3
btwnlng1.l
⊢
L
=
Line
𝒢
⁡
G
4
btwnlng1.g
⊢
φ
→
G
∈
𝒢
Tarski
5
btwnlng1.x
⊢
φ
→
X
∈
P
6
btwnlng1.y
⊢
φ
→
Y
∈
P
7
btwnlng1.z
⊢
φ
→
Z
∈
P
8
btwnlng1.d
⊢
φ
→
X
≠
Y
9
btwnlng1.1
⊢
φ
→
Z
∈
X
I
Y
10
9
3mix1d
⊢
φ
→
Z
∈
X
I
Y
∨
X
∈
Z
I
Y
∨
Y
∈
X
I
Z
11
1
3
2
4
5
6
8
7
tgellng
⊢
φ
→
Z
∈
X
L
Y
↔
Z
∈
X
I
Y
∨
X
∈
Z
I
Y
∨
Y
∈
X
I
Z
12
10
11
mpbird
⊢
φ
→
Z
∈
X
L
Y