Metamath Proof Explorer


Theorem btwnnz

Description: A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005)

Ref Expression
Assertion btwnnz A A < B B < A + 1 ¬ B

Proof

Step Hyp Ref Expression
1 zltp1le A B A < B A + 1 B
2 peano2z A A + 1
3 zre A + 1 A + 1
4 2 3 syl A A + 1
5 zre B B
6 lenlt A + 1 B A + 1 B ¬ B < A + 1
7 4 5 6 syl2an A B A + 1 B ¬ B < A + 1
8 1 7 bitrd A B A < B ¬ B < A + 1
9 8 biimpd A B A < B ¬ B < A + 1
10 9 impancom A A < B B ¬ B < A + 1
11 10 con2d A A < B B < A + 1 ¬ B
12 11 3impia A A < B B < A + 1 ¬ B