Metamath Proof Explorer


Theorem btwnz

Description: Any real number can be sandwiched between two integers. Exercise 2 of Apostol p. 28. (Contributed by NM, 10-Nov-2004)

Ref Expression
Assertion btwnz A x x < A y A < y

Proof

Step Hyp Ref Expression
1 renegcl A A
2 arch A z A < z
3 1 2 syl A z A < z
4 nnre z z
5 ltnegcon1 A z A < z z < A
6 5 ex A z A < z z < A
7 4 6 syl5 A z A < z z < A
8 7 pm5.32d A z A < z z z < A
9 nnnegz z z
10 breq1 x = z x < A z < A
11 10 rspcev z z < A x x < A
12 9 11 sylan z z < A x x < A
13 8 12 syl6bi A z A < z x x < A
14 13 expd A z A < z x x < A
15 14 rexlimdv A z A < z x x < A
16 3 15 mpd A x x < A
17 arch A y A < y
18 nnz y y
19 18 anim1i y A < y y A < y
20 19 reximi2 y A < y y A < y
21 17 20 syl A y A < y
22 16 21 jca A x x < A y A < y