| Step | Hyp | Ref | Expression | 
						
							| 1 |  | c0mhm.b |  | 
						
							| 2 |  | c0mhm.0 |  | 
						
							| 3 |  | c0mhm.h |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 4 2 | mndidcl |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 | 7 3 | fmptd |  | 
						
							| 9 | 5 | ancli |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 4 11 2 | mndlid |  | 
						
							| 13 | 10 12 | syl |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 | 3 | a1i |  | 
						
							| 16 |  | eqidd |  | 
						
							| 17 |  | simprl |  | 
						
							| 18 | 6 | adantr |  | 
						
							| 19 | 15 16 17 18 | fvmptd |  | 
						
							| 20 |  | eqidd |  | 
						
							| 21 |  | simprr |  | 
						
							| 22 | 15 20 21 18 | fvmptd |  | 
						
							| 23 | 19 22 | oveq12d |  | 
						
							| 24 |  | eqidd |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 1 25 | mndcl |  | 
						
							| 27 | 26 | 3expb |  | 
						
							| 28 | 27 | adantlr |  | 
						
							| 29 | 15 24 28 18 | fvmptd |  | 
						
							| 30 | 14 23 29 | 3eqtr4rd |  | 
						
							| 31 | 30 | ralrimivva |  | 
						
							| 32 | 3 | a1i |  | 
						
							| 33 |  | eqidd |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 1 34 | mndidcl |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 | 32 33 36 6 | fvmptd |  | 
						
							| 38 | 8 31 37 | 3jca |  | 
						
							| 39 | 38 | ancli |  | 
						
							| 40 | 1 4 25 11 34 2 | ismhm |  | 
						
							| 41 | 39 40 | sylibr |  |