Step |
Hyp |
Ref |
Expression |
1 |
|
c1liplem1.a |
|
2 |
|
c1liplem1.b |
|
3 |
|
c1liplem1.le |
|
4 |
|
c1liplem1.f |
|
5 |
|
c1liplem1.dv |
|
6 |
|
c1liplem1.cn |
|
7 |
|
c1liplem1.k |
|
8 |
|
imassrn |
|
9 |
|
absf |
|
10 |
|
frn |
|
11 |
9 10
|
ax-mp |
|
12 |
8 11
|
sstri |
|
13 |
12
|
a1i |
|
14 |
|
dvf |
|
15 |
|
ffun |
|
16 |
14 15
|
ax-mp |
|
17 |
16
|
a1i |
|
18 |
|
cncff |
|
19 |
|
fdm |
|
20 |
5 18 19
|
3syl |
|
21 |
|
ssdmres |
|
22 |
20 21
|
sylibr |
|
23 |
1
|
rexrd |
|
24 |
2
|
rexrd |
|
25 |
|
lbicc2 |
|
26 |
23 24 3 25
|
syl3anc |
|
27 |
|
funfvima2 |
|
28 |
27
|
imp |
|
29 |
17 22 26 28
|
syl21anc |
|
30 |
|
ffun |
|
31 |
9 30
|
ax-mp |
|
32 |
|
imassrn |
|
33 |
|
frn |
|
34 |
14 33
|
ax-mp |
|
35 |
32 34
|
sstri |
|
36 |
9
|
fdmi |
|
37 |
35 36
|
sseqtrri |
|
38 |
|
funfvima2 |
|
39 |
31 37 38
|
mp2an |
|
40 |
|
ne0i |
|
41 |
29 39 40
|
3syl |
|
42 |
|
ax-resscn |
|
43 |
|
ssid |
|
44 |
|
cncfss |
|
45 |
42 43 44
|
mp2an |
|
46 |
45 5
|
sselid |
|
47 |
|
cniccbdd |
|
48 |
1 2 46 47
|
syl3anc |
|
49 |
|
fvelima |
|
50 |
31 49
|
mpan |
|
51 |
|
fvres |
|
52 |
51
|
adantl |
|
53 |
52
|
fveq2d |
|
54 |
|
2fveq3 |
|
55 |
54
|
breq1d |
|
56 |
55
|
rspccva |
|
57 |
53 56
|
eqbrtrrd |
|
58 |
57
|
adantll |
|
59 |
|
fveq2 |
|
60 |
59
|
breq1d |
|
61 |
58 60
|
syl5ibcom |
|
62 |
61
|
rexlimdva |
|
63 |
|
fvelima |
|
64 |
16 63
|
mpan |
|
65 |
62 64
|
impel |
|
66 |
|
breq1 |
|
67 |
65 66
|
syl5ibcom |
|
68 |
67
|
rexlimdva |
|
69 |
50 68
|
syl5 |
|
70 |
69
|
ralrimiv |
|
71 |
70
|
ex |
|
72 |
71
|
reximdva |
|
73 |
48 72
|
mpd |
|
74 |
13 41 73
|
suprcld |
|
75 |
7 74
|
eqeltrid |
|
76 |
|
simplrr |
|
77 |
76
|
fvresd |
|
78 |
|
cncff |
|
79 |
6 78
|
syl |
|
80 |
79
|
ad2antrr |
|
81 |
80 76
|
ffvelrnd |
|
82 |
81
|
recnd |
|
83 |
77 82
|
eqeltrrd |
|
84 |
|
simplrl |
|
85 |
84
|
fvresd |
|
86 |
80 84
|
ffvelrnd |
|
87 |
86
|
recnd |
|
88 |
85 87
|
eqeltrrd |
|
89 |
83 88
|
subcld |
|
90 |
|
iccssre |
|
91 |
1 2 90
|
syl2anc |
|
92 |
91
|
ad2antrr |
|
93 |
92 76
|
sseldd |
|
94 |
92 84
|
sseldd |
|
95 |
93 94
|
resubcld |
|
96 |
95
|
recnd |
|
97 |
|
simpr |
|
98 |
|
difrp |
|
99 |
94 93 98
|
syl2anc |
|
100 |
97 99
|
mpbid |
|
101 |
100
|
rpne0d |
|
102 |
89 96 101
|
absdivd |
|
103 |
12
|
a1i |
|
104 |
41
|
ad2antrr |
|
105 |
73
|
ad2antrr |
|
106 |
31
|
a1i |
|
107 |
89 96 101
|
divcld |
|
108 |
107 36
|
eleqtrrdi |
|
109 |
94
|
rexrd |
|
110 |
93
|
rexrd |
|
111 |
94 93 97
|
ltled |
|
112 |
|
ubicc2 |
|
113 |
109 110 111 112
|
syl3anc |
|
114 |
113
|
fvresd |
|
115 |
|
lbicc2 |
|
116 |
109 110 111 115
|
syl3anc |
|
117 |
116
|
fvresd |
|
118 |
114 117
|
oveq12d |
|
119 |
118
|
oveq1d |
|
120 |
|
iccss2 |
|
121 |
120
|
ad2antlr |
|
122 |
121
|
resabs1d |
|
123 |
6
|
ad2antrr |
|
124 |
|
rescncf |
|
125 |
121 123 124
|
sylc |
|
126 |
122 125
|
eqeltrrd |
|
127 |
42
|
a1i |
|
128 |
4
|
ad2antrr |
|
129 |
|
cnex |
|
130 |
|
reex |
|
131 |
129 130
|
elpm2 |
|
132 |
131
|
simplbi |
|
133 |
128 132
|
syl |
|
134 |
131
|
simprbi |
|
135 |
128 134
|
syl |
|
136 |
|
iccssre |
|
137 |
94 93 136
|
syl2anc |
|
138 |
|
eqid |
|
139 |
138
|
tgioo2 |
|
140 |
138 139
|
dvres |
|
141 |
127 133 135 137 140
|
syl22anc |
|
142 |
|
iccntr |
|
143 |
94 93 142
|
syl2anc |
|
144 |
143
|
reseq2d |
|
145 |
141 144
|
eqtrd |
|
146 |
145
|
dmeqd |
|
147 |
|
ioossicc |
|
148 |
147 121
|
sstrid |
|
149 |
22
|
ad2antrr |
|
150 |
148 149
|
sstrd |
|
151 |
|
ssdmres |
|
152 |
150 151
|
sylib |
|
153 |
146 152
|
eqtrd |
|
154 |
94 93 97 126 153
|
mvth |
|
155 |
145
|
fveq1d |
|
156 |
155
|
adantrr |
|
157 |
|
fvres |
|
158 |
157
|
ad2antll |
|
159 |
156 158
|
eqtrd |
|
160 |
16
|
a1i |
|
161 |
22
|
ad2antrr |
|
162 |
148
|
sseld |
|
163 |
162
|
impr |
|
164 |
|
funfvima2 |
|
165 |
164
|
imp |
|
166 |
160 161 163 165
|
syl21anc |
|
167 |
159 166
|
eqeltrd |
|
168 |
|
eleq1 |
|
169 |
167 168
|
syl5ibcom |
|
170 |
169
|
expr |
|
171 |
170
|
rexlimdv |
|
172 |
154 171
|
mpd |
|
173 |
119 172
|
eqeltrrd |
|
174 |
|
funfvima |
|
175 |
174
|
imp |
|
176 |
106 108 173 175
|
syl21anc |
|
177 |
103 104 105 176
|
suprubd |
|
178 |
177 7
|
breqtrrdi |
|
179 |
102 178
|
eqbrtrrd |
|
180 |
89
|
abscld |
|
181 |
75
|
ad2antrr |
|
182 |
96 101
|
absrpcld |
|
183 |
180 181 182
|
ledivmuld |
|
184 |
179 183
|
mpbid |
|
185 |
182
|
rpcnd |
|
186 |
181
|
recnd |
|
187 |
185 186
|
mulcomd |
|
188 |
184 187
|
breqtrd |
|
189 |
188
|
ex |
|
190 |
189
|
ralrimivva |
|
191 |
75 190
|
jca |
|