Metamath Proof Explorer


Theorem cadcoma

Description: Commutative law for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Assertion cadcoma cadd φ ψ χ cadd ψ φ χ

Proof

Step Hyp Ref Expression
1 ancom φ ψ ψ φ
2 xorcom φ ψ ψ φ
3 2 anbi2i χ φ ψ χ ψ φ
4 1 3 orbi12i φ ψ χ φ ψ ψ φ χ ψ φ
5 df-cad cadd φ ψ χ φ ψ χ φ ψ
6 df-cad cadd ψ φ χ ψ φ χ ψ φ
7 4 5 6 3bitr4i cadd φ ψ χ cadd ψ φ χ