Metamath Proof Explorer


Theorem canthnumlem

Description: Lemma for canthnum . (Contributed by Mario Carneiro, 19-May-2015)

Ref Expression
Hypotheses canth4.1 W = x r | x A r x × x r We x y x F r -1 y = y
canth4.2 B = dom W
canth4.3 C = W B -1 F B
Assertion canthnumlem A V ¬ F : 𝒫 A dom card 1-1 A

Proof

Step Hyp Ref Expression
1 canth4.1 W = x r | x A r x × x r We x y x F r -1 y = y
2 canth4.2 B = dom W
3 canth4.3 C = W B -1 F B
4 f1f F : 𝒫 A dom card 1-1 A F : 𝒫 A dom card A
5 ssid 𝒫 A dom card 𝒫 A dom card
6 1 2 3 canth4 A V F : 𝒫 A dom card A 𝒫 A dom card 𝒫 A dom card B A C B F B = F C
7 5 6 mp3an3 A V F : 𝒫 A dom card A B A C B F B = F C
8 4 7 sylan2 A V F : 𝒫 A dom card 1-1 A B A C B F B = F C
9 8 simp3d A V F : 𝒫 A dom card 1-1 A F B = F C
10 simpr A V F : 𝒫 A dom card 1-1 A F : 𝒫 A dom card 1-1 A
11 8 simp1d A V F : 𝒫 A dom card 1-1 A B A
12 elpw2g A V B 𝒫 A B A
13 12 adantr A V F : 𝒫 A dom card 1-1 A B 𝒫 A B A
14 11 13 mpbird A V F : 𝒫 A dom card 1-1 A B 𝒫 A
15 eqid B = B
16 eqid W B = W B
17 15 16 pm3.2i B = B W B = W B
18 simpl A V F : 𝒫 A dom card 1-1 A A V
19 10 4 syl A V F : 𝒫 A dom card 1-1 A F : 𝒫 A dom card A
20 19 ffvelrnda A V F : 𝒫 A dom card 1-1 A x 𝒫 A dom card F x A
21 1 18 20 2 fpwwe A V F : 𝒫 A dom card 1-1 A B W W B F B B B = B W B = W B
22 17 21 mpbiri A V F : 𝒫 A dom card 1-1 A B W W B F B B
23 22 simpld A V F : 𝒫 A dom card 1-1 A B W W B
24 1 18 fpwwelem A V F : 𝒫 A dom card 1-1 A B W W B B A W B B × B W B We B y B F W B -1 y = y
25 23 24 mpbid A V F : 𝒫 A dom card 1-1 A B A W B B × B W B We B y B F W B -1 y = y
26 25 simprld A V F : 𝒫 A dom card 1-1 A W B We B
27 fvex W B V
28 weeq1 r = W B r We B W B We B
29 27 28 spcev W B We B r r We B
30 26 29 syl A V F : 𝒫 A dom card 1-1 A r r We B
31 ween B dom card r r We B
32 30 31 sylibr A V F : 𝒫 A dom card 1-1 A B dom card
33 14 32 elind A V F : 𝒫 A dom card 1-1 A B 𝒫 A dom card
34 8 simp2d A V F : 𝒫 A dom card 1-1 A C B
35 34 pssssd A V F : 𝒫 A dom card 1-1 A C B
36 35 11 sstrd A V F : 𝒫 A dom card 1-1 A C A
37 elpw2g A V C 𝒫 A C A
38 37 adantr A V F : 𝒫 A dom card 1-1 A C 𝒫 A C A
39 36 38 mpbird A V F : 𝒫 A dom card 1-1 A C 𝒫 A
40 ssnum B dom card C B C dom card
41 32 35 40 syl2anc A V F : 𝒫 A dom card 1-1 A C dom card
42 39 41 elind A V F : 𝒫 A dom card 1-1 A C 𝒫 A dom card
43 f1fveq F : 𝒫 A dom card 1-1 A B 𝒫 A dom card C 𝒫 A dom card F B = F C B = C
44 10 33 42 43 syl12anc A V F : 𝒫 A dom card 1-1 A F B = F C B = C
45 9 44 mpbid A V F : 𝒫 A dom card 1-1 A B = C
46 34 pssned A V F : 𝒫 A dom card 1-1 A C B
47 46 necomd A V F : 𝒫 A dom card 1-1 A B C
48 47 neneqd A V F : 𝒫 A dom card 1-1 A ¬ B = C
49 45 48 pm2.65da A V ¬ F : 𝒫 A dom card 1-1 A