Metamath Proof Explorer


Theorem canthp1

Description: A slightly stronger form of Cantor's theorem: For 1 < n , n + 1 < 2 ^ n . Corollary 1.6 of KanamoriPincus p. 417. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion canthp1 1 𝑜 A A ⊔︀ 1 𝑜 𝒫 A

Proof

Step Hyp Ref Expression
1 1sdom2 1 𝑜 2 𝑜
2 sdomdom 1 𝑜 2 𝑜 1 𝑜 2 𝑜
3 1 2 ax-mp 1 𝑜 2 𝑜
4 relsdom Rel
5 4 brrelex2i 1 𝑜 A A V
6 djudom2 1 𝑜 2 𝑜 A V A ⊔︀ 1 𝑜 A ⊔︀ 2 𝑜
7 3 5 6 sylancr 1 𝑜 A A ⊔︀ 1 𝑜 A ⊔︀ 2 𝑜
8 canthp1lem1 1 𝑜 A A ⊔︀ 2 𝑜 𝒫 A
9 domtr A ⊔︀ 1 𝑜 A ⊔︀ 2 𝑜 A ⊔︀ 2 𝑜 𝒫 A A ⊔︀ 1 𝑜 𝒫 A
10 7 8 9 syl2anc 1 𝑜 A A ⊔︀ 1 𝑜 𝒫 A
11 fal ¬
12 ensym A ⊔︀ 1 𝑜 𝒫 A 𝒫 A A ⊔︀ 1 𝑜
13 bren 𝒫 A A ⊔︀ 1 𝑜 f f : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜
14 12 13 sylib A ⊔︀ 1 𝑜 𝒫 A f f : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜
15 f1of f : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 f : 𝒫 A A ⊔︀ 1 𝑜
16 pwidg A V A 𝒫 A
17 5 16 syl 1 𝑜 A A 𝒫 A
18 ffvelrn f : 𝒫 A A ⊔︀ 1 𝑜 A 𝒫 A f A A ⊔︀ 1 𝑜
19 15 17 18 syl2anr 1 𝑜 A f : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 f A A ⊔︀ 1 𝑜
20 dju1dif A V f A A ⊔︀ 1 𝑜 A ⊔︀ 1 𝑜 f A A
21 5 19 20 syl2an2r 1 𝑜 A f : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 A ⊔︀ 1 𝑜 f A A
22 bren A ⊔︀ 1 𝑜 f A A g g : A ⊔︀ 1 𝑜 f A 1-1 onto A
23 21 22 sylib 1 𝑜 A f : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 g g : A ⊔︀ 1 𝑜 f A 1-1 onto A
24 simpll 1 𝑜 A f : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 g : A ⊔︀ 1 𝑜 f A 1-1 onto A 1 𝑜 A
25 simplr 1 𝑜 A f : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 g : A ⊔︀ 1 𝑜 f A 1-1 onto A f : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜
26 simpr 1 𝑜 A f : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 g : A ⊔︀ 1 𝑜 f A 1-1 onto A g : A ⊔︀ 1 𝑜 f A 1-1 onto A
27 eqeq1 w = x w = A x = A
28 id w = x w = x
29 27 28 ifbieq2d w = x if w = A w = if x = A x
30 29 cbvmptv w 𝒫 A if w = A w = x 𝒫 A if x = A x
31 30 coeq2i g f w 𝒫 A if w = A w = g f x 𝒫 A if x = A x
32 eqid a s | a A s a × a s We a z a g f w 𝒫 A if w = A w s -1 z = z = a s | a A s a × a s We a z a g f w 𝒫 A if w = A w s -1 z = z
33 32 fpwwecbv a s | a A s a × a s We a z a g f w 𝒫 A if w = A w s -1 z = z = x r | x A r x × x r We x y x g f w 𝒫 A if w = A w r -1 y = y
34 eqid dom a s | a A s a × a s We a z a g f w 𝒫 A if w = A w s -1 z = z = dom a s | a A s a × a s We a z a g f w 𝒫 A if w = A w s -1 z = z
35 24 25 26 31 33 34 canthp1lem2 ¬ 1 𝑜 A f : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 g : A ⊔︀ 1 𝑜 f A 1-1 onto A
36 35 pm2.21i 1 𝑜 A f : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 g : A ⊔︀ 1 𝑜 f A 1-1 onto A
37 23 36 exlimddv 1 𝑜 A f : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜
38 37 ex 1 𝑜 A f : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜
39 38 exlimdv 1 𝑜 A f f : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜
40 14 39 syl5 1 𝑜 A A ⊔︀ 1 𝑜 𝒫 A
41 11 40 mtoi 1 𝑜 A ¬ A ⊔︀ 1 𝑜 𝒫 A
42 brsdom A ⊔︀ 1 𝑜 𝒫 A A ⊔︀ 1 𝑜 𝒫 A ¬ A ⊔︀ 1 𝑜 𝒫 A
43 10 41 42 sylanbrc 1 𝑜 A A ⊔︀ 1 𝑜 𝒫 A