| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1sdom2 |
|
| 2 |
|
sdomdom |
|
| 3 |
1 2
|
ax-mp |
|
| 4 |
|
relsdom |
|
| 5 |
4
|
brrelex2i |
|
| 6 |
|
djudom2 |
|
| 7 |
3 5 6
|
sylancr |
|
| 8 |
|
canthp1lem1 |
|
| 9 |
|
domtr |
|
| 10 |
7 8 9
|
syl2anc |
|
| 11 |
|
fal |
|
| 12 |
|
ensym |
|
| 13 |
|
bren |
|
| 14 |
12 13
|
sylib |
|
| 15 |
|
f1of |
|
| 16 |
|
pwidg |
|
| 17 |
5 16
|
syl |
|
| 18 |
|
ffvelcdm |
|
| 19 |
15 17 18
|
syl2anr |
|
| 20 |
|
dju1dif |
|
| 21 |
5 19 20
|
syl2an2r |
|
| 22 |
|
bren |
|
| 23 |
21 22
|
sylib |
|
| 24 |
|
simpll |
|
| 25 |
|
simplr |
|
| 26 |
|
simpr |
|
| 27 |
|
eqeq1 |
|
| 28 |
|
id |
|
| 29 |
27 28
|
ifbieq2d |
|
| 30 |
29
|
cbvmptv |
|
| 31 |
30
|
coeq2i |
|
| 32 |
|
eqid |
|
| 33 |
32
|
fpwwecbv |
|
| 34 |
|
eqid |
|
| 35 |
24 25 26 31 33 34
|
canthp1lem2 |
|
| 36 |
35
|
pm2.21i |
|
| 37 |
23 36
|
exlimddv |
|
| 38 |
37
|
ex |
|
| 39 |
38
|
exlimdv |
|
| 40 |
14 39
|
syl5 |
|
| 41 |
11 40
|
mtoi |
|
| 42 |
|
brsdom |
|
| 43 |
10 41 42
|
sylanbrc |
|