Step |
Hyp |
Ref |
Expression |
1 |
|
1sdom2 |
|
2 |
|
djuxpdom |
|
3 |
1 2
|
mpan2 |
|
4 |
|
sdom0 |
|
5 |
|
breq2 |
|
6 |
4 5
|
mtbiri |
|
7 |
6
|
con2i |
|
8 |
|
neq0 |
|
9 |
7 8
|
sylib |
|
10 |
|
relsdom |
|
11 |
10
|
brrelex2i |
|
12 |
11
|
adantr |
|
13 |
|
enrefg |
|
14 |
12 13
|
syl |
|
15 |
|
df2o2 |
|
16 |
|
pwpw0 |
|
17 |
15 16
|
eqtr4i |
|
18 |
|
0ex |
|
19 |
|
vex |
|
20 |
|
en2sn |
|
21 |
18 19 20
|
mp2an |
|
22 |
|
pwen |
|
23 |
21 22
|
ax-mp |
|
24 |
17 23
|
eqbrtri |
|
25 |
|
xpen |
|
26 |
14 24 25
|
sylancl |
|
27 |
|
snex |
|
28 |
27
|
pwex |
|
29 |
|
uncom |
|
30 |
|
simpr |
|
31 |
30
|
snssd |
|
32 |
|
undif |
|
33 |
31 32
|
sylib |
|
34 |
29 33
|
eqtrid |
|
35 |
12
|
difexd |
|
36 |
|
canth2g |
|
37 |
|
domunsn |
|
38 |
35 36 37
|
3syl |
|
39 |
34 38
|
eqbrtrrd |
|
40 |
|
xpdom1g |
|
41 |
28 39 40
|
sylancr |
|
42 |
|
endomtr |
|
43 |
26 41 42
|
syl2anc |
|
44 |
|
pwdjuen |
|
45 |
35 27 44
|
sylancl |
|
46 |
45
|
ensymd |
|
47 |
|
domentr |
|
48 |
43 46 47
|
syl2anc |
|
49 |
27
|
a1i |
|
50 |
|
disjdifr |
|
51 |
50
|
a1i |
|
52 |
|
endjudisj |
|
53 |
35 49 51 52
|
syl3anc |
|
54 |
53 34
|
breqtrd |
|
55 |
|
pwen |
|
56 |
54 55
|
syl |
|
57 |
|
domentr |
|
58 |
48 56 57
|
syl2anc |
|
59 |
9 58
|
exlimddv |
|
60 |
|
domtr |
|
61 |
3 59 60
|
syl2anc |
|