| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1sdom2 |
|
| 2 |
|
djuxpdom |
|
| 3 |
1 2
|
mpan2 |
|
| 4 |
|
sdom0 |
|
| 5 |
|
breq2 |
|
| 6 |
4 5
|
mtbiri |
|
| 7 |
6
|
con2i |
|
| 8 |
|
neq0 |
|
| 9 |
7 8
|
sylib |
|
| 10 |
|
relsdom |
|
| 11 |
10
|
brrelex2i |
|
| 12 |
11
|
adantr |
|
| 13 |
|
enrefg |
|
| 14 |
12 13
|
syl |
|
| 15 |
|
df2o2 |
|
| 16 |
|
pwpw0 |
|
| 17 |
15 16
|
eqtr4i |
|
| 18 |
|
0ex |
|
| 19 |
|
vex |
|
| 20 |
|
en2sn |
|
| 21 |
18 19 20
|
mp2an |
|
| 22 |
|
pwen |
|
| 23 |
21 22
|
ax-mp |
|
| 24 |
17 23
|
eqbrtri |
|
| 25 |
|
xpen |
|
| 26 |
14 24 25
|
sylancl |
|
| 27 |
|
vsnex |
|
| 28 |
27
|
pwex |
|
| 29 |
|
uncom |
|
| 30 |
|
simpr |
|
| 31 |
30
|
snssd |
|
| 32 |
|
undif |
|
| 33 |
31 32
|
sylib |
|
| 34 |
29 33
|
eqtrid |
|
| 35 |
12
|
difexd |
|
| 36 |
|
canth2g |
|
| 37 |
|
domunsn |
|
| 38 |
35 36 37
|
3syl |
|
| 39 |
34 38
|
eqbrtrrd |
|
| 40 |
|
xpdom1g |
|
| 41 |
28 39 40
|
sylancr |
|
| 42 |
|
endomtr |
|
| 43 |
26 41 42
|
syl2anc |
|
| 44 |
|
pwdjuen |
|
| 45 |
35 27 44
|
sylancl |
|
| 46 |
45
|
ensymd |
|
| 47 |
|
domentr |
|
| 48 |
43 46 47
|
syl2anc |
|
| 49 |
27
|
a1i |
|
| 50 |
|
disjdifr |
|
| 51 |
50
|
a1i |
|
| 52 |
|
endjudisj |
|
| 53 |
35 49 51 52
|
syl3anc |
|
| 54 |
53 34
|
breqtrd |
|
| 55 |
|
pwen |
|
| 56 |
54 55
|
syl |
|
| 57 |
|
domentr |
|
| 58 |
48 56 57
|
syl2anc |
|
| 59 |
9 58
|
exlimddv |
|
| 60 |
|
domtr |
|
| 61 |
3 59 60
|
syl2anc |
|