Metamath Proof Explorer


Theorem canthp1lem2

Description: Lemma for canthp1 . (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Hypotheses canthp1lem2.1 φ 1 𝑜 A
canthp1lem2.2 φ F : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜
canthp1lem2.3 φ G : A ⊔︀ 1 𝑜 F A 1-1 onto A
canthp1lem2.4 H = G F x 𝒫 A if x = A x
canthp1lem2.5 W = x r | x A r x × x r We x y x H r -1 y = y
canthp1lem2.6 B = dom W
Assertion canthp1lem2 ¬ φ

Proof

Step Hyp Ref Expression
1 canthp1lem2.1 φ 1 𝑜 A
2 canthp1lem2.2 φ F : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜
3 canthp1lem2.3 φ G : A ⊔︀ 1 𝑜 F A 1-1 onto A
4 canthp1lem2.4 H = G F x 𝒫 A if x = A x
5 canthp1lem2.5 W = x r | x A r x × x r We x y x H r -1 y = y
6 canthp1lem2.6 B = dom W
7 relsdom Rel
8 7 brrelex2i 1 𝑜 A A V
9 1 8 syl φ A V
10 9 pwexd φ 𝒫 A V
11 f1oeng 𝒫 A V F : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 𝒫 A A ⊔︀ 1 𝑜
12 10 2 11 syl2anc φ 𝒫 A A ⊔︀ 1 𝑜
13 12 ensymd φ A ⊔︀ 1 𝑜 𝒫 A
14 canth2g A V A 𝒫 A
15 9 14 syl φ A 𝒫 A
16 sdomen2 𝒫 A A ⊔︀ 1 𝑜 A 𝒫 A A A ⊔︀ 1 𝑜
17 12 16 syl φ A 𝒫 A A A ⊔︀ 1 𝑜
18 15 17 mpbid φ A A ⊔︀ 1 𝑜
19 sdomnen A A ⊔︀ 1 𝑜 ¬ A A ⊔︀ 1 𝑜
20 18 19 syl φ ¬ A A ⊔︀ 1 𝑜
21 omelon ω On
22 onenon ω On ω dom card
23 21 22 ax-mp ω dom card
24 dff1o3 F : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 F : 𝒫 A onto A ⊔︀ 1 𝑜 Fun F -1
25 24 simprbi F : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 Fun F -1
26 2 25 syl φ Fun F -1
27 f1ofo F : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 F : 𝒫 A onto A ⊔︀ 1 𝑜
28 2 27 syl φ F : 𝒫 A onto A ⊔︀ 1 𝑜
29 f1ofn F : 𝒫 A 1-1 onto A ⊔︀ 1 𝑜 F Fn 𝒫 A
30 fnresdm F Fn 𝒫 A F 𝒫 A = F
31 foeq1 F 𝒫 A = F F 𝒫 A : 𝒫 A onto A ⊔︀ 1 𝑜 F : 𝒫 A onto A ⊔︀ 1 𝑜
32 2 29 30 31 4syl φ F 𝒫 A : 𝒫 A onto A ⊔︀ 1 𝑜 F : 𝒫 A onto A ⊔︀ 1 𝑜
33 28 32 mpbird φ F 𝒫 A : 𝒫 A onto A ⊔︀ 1 𝑜
34 fvex F A V
35 f1osng A V F A V A F A : A 1-1 onto F A
36 9 34 35 sylancl φ A F A : A 1-1 onto F A
37 2 29 syl φ F Fn 𝒫 A
38 pwidg A V A 𝒫 A
39 9 38 syl φ A 𝒫 A
40 fnressn F Fn 𝒫 A A 𝒫 A F A = A F A
41 37 39 40 syl2anc φ F A = A F A
42 41 f1oeq1d φ F A : A 1-1 onto F A A F A : A 1-1 onto F A
43 36 42 mpbird φ F A : A 1-1 onto F A
44 f1ofo F A : A 1-1 onto F A F A : A onto F A
45 43 44 syl φ F A : A onto F A
46 resdif Fun F -1 F 𝒫 A : 𝒫 A onto A ⊔︀ 1 𝑜 F A : A onto F A F 𝒫 A A : 𝒫 A A 1-1 onto A ⊔︀ 1 𝑜 F A
47 26 33 45 46 syl3anc φ F 𝒫 A A : 𝒫 A A 1-1 onto A ⊔︀ 1 𝑜 F A
48 f1oco G : A ⊔︀ 1 𝑜 F A 1-1 onto A F 𝒫 A A : 𝒫 A A 1-1 onto A ⊔︀ 1 𝑜 F A G F 𝒫 A A : 𝒫 A A 1-1 onto A
49 3 47 48 syl2anc φ G F 𝒫 A A : 𝒫 A A 1-1 onto A
50 resco G F 𝒫 A A = G F 𝒫 A A
51 f1oeq1 G F 𝒫 A A = G F 𝒫 A A G F 𝒫 A A : 𝒫 A A 1-1 onto A G F 𝒫 A A : 𝒫 A A 1-1 onto A
52 50 51 ax-mp G F 𝒫 A A : 𝒫 A A 1-1 onto A G F 𝒫 A A : 𝒫 A A 1-1 onto A
53 49 52 sylibr φ G F 𝒫 A A : 𝒫 A A 1-1 onto A
54 f1of G F 𝒫 A A : 𝒫 A A 1-1 onto A G F 𝒫 A A : 𝒫 A A A
55 53 54 syl φ G F 𝒫 A A : 𝒫 A A A
56 0elpw 𝒫 A
57 56 a1i φ x 𝒫 A x = A 𝒫 A
58 sdom0 ¬ 1 𝑜
59 breq2 = A 1 𝑜 1 𝑜 A
60 58 59 mtbii = A ¬ 1 𝑜 A
61 60 necon2ai 1 𝑜 A A
62 1 61 syl φ A
63 62 ad2antrr φ x 𝒫 A x = A A
64 eldifsn 𝒫 A A 𝒫 A A
65 57 63 64 sylanbrc φ x 𝒫 A x = A 𝒫 A A
66 simplr φ x 𝒫 A ¬ x = A x 𝒫 A
67 simpr φ x 𝒫 A ¬ x = A ¬ x = A
68 67 neqned φ x 𝒫 A ¬ x = A x A
69 eldifsn x 𝒫 A A x 𝒫 A x A
70 66 68 69 sylanbrc φ x 𝒫 A ¬ x = A x 𝒫 A A
71 65 70 ifclda φ x 𝒫 A if x = A x 𝒫 A A
72 71 fmpttd φ x 𝒫 A if x = A x : 𝒫 A 𝒫 A A
73 55 72 fcod φ G F 𝒫 A A x 𝒫 A if x = A x : 𝒫 A A
74 72 frnd φ ran x 𝒫 A if x = A x 𝒫 A A
75 cores ran x 𝒫 A if x = A x 𝒫 A A G F 𝒫 A A x 𝒫 A if x = A x = G F x 𝒫 A if x = A x
76 74 75 syl φ G F 𝒫 A A x 𝒫 A if x = A x = G F x 𝒫 A if x = A x
77 76 4 eqtr4di φ G F 𝒫 A A x 𝒫 A if x = A x = H
78 77 feq1d φ G F 𝒫 A A x 𝒫 A if x = A x : 𝒫 A A H : 𝒫 A A
79 73 78 mpbid φ H : 𝒫 A A
80 inss1 𝒫 A dom card 𝒫 A
81 80 a1i φ 𝒫 A dom card 𝒫 A
82 eqid W B -1 H B = W B -1 H B
83 5 6 82 canth4 A V H : 𝒫 A A 𝒫 A dom card 𝒫 A B A W B -1 H B B H B = H W B -1 H B
84 9 79 81 83 syl3anc φ B A W B -1 H B B H B = H W B -1 H B
85 84 simp1d φ B A
86 84 simp2d φ W B -1 H B B
87 86 pssned φ W B -1 H B B
88 87 necomd φ B W B -1 H B
89 84 simp3d φ H B = H W B -1 H B
90 4 fveq1i H B = G F x 𝒫 A if x = A x B
91 4 fveq1i H W B -1 H B = G F x 𝒫 A if x = A x W B -1 H B
92 89 90 91 3eqtr3g φ G F x 𝒫 A if x = A x B = G F x 𝒫 A if x = A x W B -1 H B
93 9 85 sselpwd φ B 𝒫 A
94 72 93 fvco3d φ G F x 𝒫 A if x = A x B = G F x 𝒫 A if x = A x B
95 86 pssssd φ W B -1 H B B
96 95 85 sstrd φ W B -1 H B A
97 9 96 sselpwd φ W B -1 H B 𝒫 A
98 72 97 fvco3d φ G F x 𝒫 A if x = A x W B -1 H B = G F x 𝒫 A if x = A x W B -1 H B
99 92 94 98 3eqtr3d φ G F x 𝒫 A if x = A x B = G F x 𝒫 A if x = A x W B -1 H B
100 99 adantr φ B A G F x 𝒫 A if x = A x B = G F x 𝒫 A if x = A x W B -1 H B
101 eqid x 𝒫 A if x = A x = x 𝒫 A if x = A x
102 eqeq1 x = B x = A B = A
103 id x = B x = B
104 102 103 ifbieq2d x = B if x = A x = if B = A B
105 ifcl 𝒫 A B 𝒫 A if B = A B 𝒫 A
106 56 93 105 sylancr φ if B = A B 𝒫 A
107 101 104 93 106 fvmptd3 φ x 𝒫 A if x = A x B = if B = A B
108 pssne B A B A
109 108 neneqd B A ¬ B = A
110 109 iffalsed B A if B = A B = B
111 107 110 sylan9eq φ B A x 𝒫 A if x = A x B = B
112 111 fveq2d φ B A G F x 𝒫 A if x = A x B = G F B
113 eqeq1 x = W B -1 H B x = A W B -1 H B = A
114 id x = W B -1 H B x = W B -1 H B
115 113 114 ifbieq2d x = W B -1 H B if x = A x = if W B -1 H B = A W B -1 H B
116 ifcl 𝒫 A W B -1 H B 𝒫 A if W B -1 H B = A W B -1 H B 𝒫 A
117 56 97 116 sylancr φ if W B -1 H B = A W B -1 H B 𝒫 A
118 101 115 97 117 fvmptd3 φ x 𝒫 A if x = A x W B -1 H B = if W B -1 H B = A W B -1 H B
119 118 adantr φ B A x 𝒫 A if x = A x W B -1 H B = if W B -1 H B = A W B -1 H B
120 sspsstr W B -1 H B B B A W B -1 H B A
121 95 120 sylan φ B A W B -1 H B A
122 121 pssned φ B A W B -1 H B A
123 122 neneqd φ B A ¬ W B -1 H B = A
124 123 iffalsed φ B A if W B -1 H B = A W B -1 H B = W B -1 H B
125 119 124 eqtrd φ B A x 𝒫 A if x = A x W B -1 H B = W B -1 H B
126 125 fveq2d φ B A G F x 𝒫 A if x = A x W B -1 H B = G F W B -1 H B
127 100 112 126 3eqtr3d φ B A G F B = G F W B -1 H B
128 93 108 anim12i φ B A B 𝒫 A B A
129 eldifsn B 𝒫 A A B 𝒫 A B A
130 128 129 sylibr φ B A B 𝒫 A A
131 130 fvresd φ B A G F 𝒫 A A B = G F B
132 97 adantr φ B A W B -1 H B 𝒫 A
133 eldifsn W B -1 H B 𝒫 A A W B -1 H B 𝒫 A W B -1 H B A
134 132 122 133 sylanbrc φ B A W B -1 H B 𝒫 A A
135 134 fvresd φ B A G F 𝒫 A A W B -1 H B = G F W B -1 H B
136 127 131 135 3eqtr4d φ B A G F 𝒫 A A B = G F 𝒫 A A W B -1 H B
137 f1of1 G F 𝒫 A A : 𝒫 A A 1-1 onto A G F 𝒫 A A : 𝒫 A A 1-1 A
138 53 137 syl φ G F 𝒫 A A : 𝒫 A A 1-1 A
139 138 adantr φ B A G F 𝒫 A A : 𝒫 A A 1-1 A
140 f1fveq G F 𝒫 A A : 𝒫 A A 1-1 A B 𝒫 A A W B -1 H B 𝒫 A A G F 𝒫 A A B = G F 𝒫 A A W B -1 H B B = W B -1 H B
141 139 130 134 140 syl12anc φ B A G F 𝒫 A A B = G F 𝒫 A A W B -1 H B B = W B -1 H B
142 136 141 mpbid φ B A B = W B -1 H B
143 142 ex φ B A B = W B -1 H B
144 143 necon3ad φ B W B -1 H B ¬ B A
145 88 144 mpd φ ¬ B A
146 npss ¬ B A B A B = A
147 145 146 sylib φ B A B = A
148 85 147 mpd φ B = A
149 eqid B = B
150 eqid W B = W B
151 149 150 pm3.2i B = B W B = W B
152 elinel1 x 𝒫 A dom card x 𝒫 A
153 ffvelrn H : 𝒫 A A x 𝒫 A H x A
154 79 152 153 syl2an φ x 𝒫 A dom card H x A
155 5 9 154 6 fpwwe φ B W W B H B B B = B W B = W B
156 151 155 mpbiri φ B W W B H B B
157 156 simpld φ B W W B
158 5 9 fpwwelem φ B W W B B A W B B × B W B We B y B H W B -1 y = y
159 157 158 mpbid φ B A W B B × B W B We B y B H W B -1 y = y
160 159 simprld φ W B We B
161 fvex W B V
162 weeq1 r = W B r We B W B We B
163 161 162 spcev W B We B r r We B
164 160 163 syl φ r r We B
165 ween B dom card r r We B
166 164 165 sylibr φ B dom card
167 148 166 eqeltrrd φ A dom card
168 domtri2 ω dom card A dom card ω A ¬ A ω
169 23 167 168 sylancr φ ω A ¬ A ω
170 infdju1 ω A A ⊔︀ 1 𝑜 A
171 169 170 syl6bir φ ¬ A ω A ⊔︀ 1 𝑜 A
172 ensym A ⊔︀ 1 𝑜 A A A ⊔︀ 1 𝑜
173 171 172 syl6 φ ¬ A ω A A ⊔︀ 1 𝑜
174 20 173 mt3d φ A ω
175 2onn 2 𝑜 ω
176 nnsdom 2 𝑜 ω 2 𝑜 ω
177 175 176 ax-mp 2 𝑜 ω
178 djufi A ω 2 𝑜 ω A ⊔︀ 2 𝑜 ω
179 174 177 178 sylancl φ A ⊔︀ 2 𝑜 ω
180 isfinite A ⊔︀ 2 𝑜 Fin A ⊔︀ 2 𝑜 ω
181 179 180 sylibr φ A ⊔︀ 2 𝑜 Fin
182 sssucid 1 𝑜 suc 1 𝑜
183 df-2o 2 𝑜 = suc 1 𝑜
184 182 183 sseqtrri 1 𝑜 2 𝑜
185 xpss2 1 𝑜 2 𝑜 1 𝑜 × 1 𝑜 1 𝑜 × 2 𝑜
186 184 185 ax-mp 1 𝑜 × 1 𝑜 1 𝑜 × 2 𝑜
187 unss2 1 𝑜 × 1 𝑜 1 𝑜 × 2 𝑜 × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 2 𝑜
188 186 187 mp1i φ × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 2 𝑜
189 ssun2 1 𝑜 × 2 𝑜 × A 1 𝑜 × 2 𝑜
190 1oex 1 𝑜 V
191 190 snid 1 𝑜 1 𝑜
192 190 sucid 1 𝑜 suc 1 𝑜
193 192 183 eleqtrri 1 𝑜 2 𝑜
194 opelxpi 1 𝑜 1 𝑜 1 𝑜 2 𝑜 1 𝑜 1 𝑜 1 𝑜 × 2 𝑜
195 191 193 194 mp2an 1 𝑜 1 𝑜 1 𝑜 × 2 𝑜
196 189 195 sselii 1 𝑜 1 𝑜 × A 1 𝑜 × 2 𝑜
197 1n0 1 𝑜
198 197 neii ¬ 1 𝑜 =
199 opelxp1 1 𝑜 1 𝑜 × A 1 𝑜
200 elsni 1 𝑜 1 𝑜 =
201 199 200 syl 1 𝑜 1 𝑜 × A 1 𝑜 =
202 198 201 mto ¬ 1 𝑜 1 𝑜 × A
203 1onn 1 𝑜 ω
204 nnord 1 𝑜 ω Ord 1 𝑜
205 ordirr Ord 1 𝑜 ¬ 1 𝑜 1 𝑜
206 203 204 205 mp2b ¬ 1 𝑜 1 𝑜
207 opelxp2 1 𝑜 1 𝑜 1 𝑜 × 1 𝑜 1 𝑜 1 𝑜
208 206 207 mto ¬ 1 𝑜 1 𝑜 1 𝑜 × 1 𝑜
209 202 208 pm3.2ni ¬ 1 𝑜 1 𝑜 × A 1 𝑜 1 𝑜 1 𝑜 × 1 𝑜
210 elun 1 𝑜 1 𝑜 × A 1 𝑜 × 1 𝑜 1 𝑜 1 𝑜 × A 1 𝑜 1 𝑜 1 𝑜 × 1 𝑜
211 209 210 mtbir ¬ 1 𝑜 1 𝑜 × A 1 𝑜 × 1 𝑜
212 ssnelpss × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 2 𝑜 1 𝑜 1 𝑜 × A 1 𝑜 × 2 𝑜 ¬ 1 𝑜 1 𝑜 × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 2 𝑜
213 196 211 212 mp2ani × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 2 𝑜 × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 2 𝑜
214 188 213 syl φ × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 2 𝑜
215 df-dju A ⊔︀ 1 𝑜 = × A 1 𝑜 × 1 𝑜
216 df-dju A ⊔︀ 2 𝑜 = × A 1 𝑜 × 2 𝑜
217 215 216 psseq12i A ⊔︀ 1 𝑜 A ⊔︀ 2 𝑜 × A 1 𝑜 × 1 𝑜 × A 1 𝑜 × 2 𝑜
218 214 217 sylibr φ A ⊔︀ 1 𝑜 A ⊔︀ 2 𝑜
219 php3 A ⊔︀ 2 𝑜 Fin A ⊔︀ 1 𝑜 A ⊔︀ 2 𝑜 A ⊔︀ 1 𝑜 A ⊔︀ 2 𝑜
220 181 218 219 syl2anc φ A ⊔︀ 1 𝑜 A ⊔︀ 2 𝑜
221 canthp1lem1 1 𝑜 A A ⊔︀ 2 𝑜 𝒫 A
222 1 221 syl φ A ⊔︀ 2 𝑜 𝒫 A
223 sdomdomtr A ⊔︀ 1 𝑜 A ⊔︀ 2 𝑜 A ⊔︀ 2 𝑜 𝒫 A A ⊔︀ 1 𝑜 𝒫 A
224 220 222 223 syl2anc φ A ⊔︀ 1 𝑜 𝒫 A
225 sdomnen A ⊔︀ 1 𝑜 𝒫 A ¬ A ⊔︀ 1 𝑜 𝒫 A
226 224 225 syl φ ¬ A ⊔︀ 1 𝑜 𝒫 A
227 13 226 pm2.65i ¬ φ