Metamath Proof Explorer


Theorem canthwdom

Description: Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 , equivalent to canth ). (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion canthwdom ¬ 𝒫 A * A

Proof

Step Hyp Ref Expression
1 0elpw 𝒫 A
2 ne0i 𝒫 A 𝒫 A
3 1 2 mp1i 𝒫 A * A 𝒫 A
4 brwdomn0 𝒫 A 𝒫 A * A f f : A onto 𝒫 A
5 3 4 syl 𝒫 A * A 𝒫 A * A f f : A onto 𝒫 A
6 5 ibi 𝒫 A * A f f : A onto 𝒫 A
7 relwdom Rel *
8 7 brrelex2i 𝒫 A * A A V
9 foeq2 x = A f : x onto 𝒫 x f : A onto 𝒫 x
10 pweq x = A 𝒫 x = 𝒫 A
11 foeq3 𝒫 x = 𝒫 A f : A onto 𝒫 x f : A onto 𝒫 A
12 10 11 syl x = A f : A onto 𝒫 x f : A onto 𝒫 A
13 9 12 bitrd x = A f : x onto 𝒫 x f : A onto 𝒫 A
14 13 notbid x = A ¬ f : x onto 𝒫 x ¬ f : A onto 𝒫 A
15 vex x V
16 15 canth ¬ f : x onto 𝒫 x
17 14 16 vtoclg A V ¬ f : A onto 𝒫 A
18 8 17 syl 𝒫 A * A ¬ f : A onto 𝒫 A
19 18 nexdv 𝒫 A * A ¬ f f : A onto 𝒫 A
20 6 19 pm2.65i ¬ 𝒫 A * A